Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could lightning give rise to life?

05.02.2007
Specialists of the Institute of Geology of Komi Research Center of Ural Branch, (Russian Academy of Sciences) and the Institute of Natural Resources, Ecology and Cryology, Siberian Branch (Russian Academy of Sciences) have for the first time described the formation that results from a stroke of lightning into a plant - phytofulgurite.

So far, it has been assumed that specific geological bodies are formed at the strike of lightning only if the lightning hits sedimentary rock or a cliff. However, it has turned out that dry grass sometimes turns into a complicated alloy resembling bitumen under the influence of the lightning. Normally, formation of such substances takes millions of years. This unusual stone contains amino acids typical of living organisms that could be formed only by abiogenous high-temperature synthesis.

Once, in the village of Podvolok in the Chita Region, lightning hit a haycock and burnt it down. This was quite an ordinary event but when the owner raked away the ashes , he noticed a small flat, blue-black, fibrous, glassy piece of unknown substance. Guessing that the find could be of interest, the natives decided to show it to geologists. It has turned out that inhabitants of Podvolok discovered a geological object – phytofulgurite - earlier unknown to science. This substance (close in composition to bitumens or humus) is formed in case of a lightning strike at vegetation. Within an instant of the highest temperature (almost 25 thousand degrees) and pressure, the vegetable biomass underwent such changes, which in less severe conditions last for millions of years.

The sample consisted of conglomerated fibers, staphyline structures, spheres and hollows of a different size, from fractions of a millimeter through several millimeters. Fibrous formations apparently repeated disposition of grass stems. The main elements making part of it are carbon, hydrogen, nitrogen and sulfur, the rest – approximately a third – being oxygen and trace elements. Such composition is typical of natural bitumens or humus.

... more about:
»acids »amino acid »bitumen »lightning

It is interesting to note that phytofulgirite contained the quantity of amino acids unprecedented for bitumens. Amino acids are present in any mineral oil and its natural derivatives, however, in this case their content turned out to be higher by a dozen of times. At that, 95 percent of amino acids belonged to left isomers, as it occurs in living organisms. Nevertheless, these amino acids could not be remains of grass – at such temperature all organic matter burns down completely.

The researchers assumed that amino acids in this case were formed abioticly – without participation of life, by high-temperature synthesis. This requires, on top of high temperature, X-radiation and gamma radiation. But these particular conditions do occur in the point of a lightning stroke. The researchers had managed earlier during the experiment to synthesize left amino acids at the laboratory in the course of solid bitumen irradiation. Maybe, this is the way protozoa organic compounds originated which gave rise to the first molecules of living creatures?

Detailed investigation of phytofulgurite (both chemically and under a microscope), has managed to discover traces of multiple processes that take place for example during lava solidification or after meteorite hitting the earth. Many years, even millions of years went into fractions of a second. If so, why not take advantage of this effect in order to observe geosphere history in the laboratory? Or it is possible to find purely practical application for it and to forward human activity waste “to the future” with the help of lightning.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: acids amino acid bitumen lightning

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>