Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic fingerprints identify brain tumors' origins

02.02.2007
Genetic fingerprints that reveal where a brain cell came from remain distinct even after the cell becomes a brain tumor, an international coalition of scientists will report in the February 1 issue of Cancer Research.

The finding adds a new layer of complexity to the quest to understand the causes of childhood brain cancers, according to senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology at Washington University School of Medicine in St. Louis and co-director of the neuro-oncology program at the Siteman Cancer Center.

"Our findings suggest that brain tumors arising in different regions may be genetically distinct as a consequence of their unique cellular origins," Gutmann says. "This is yet another factor we need to consider when trying to understand how pediatric brain tumors form."

Researchers use information about tumor origins to develop new tests and treatments for the tumors. Brain tumors are the leading cause of cancer-related death in children, and the most common childhood brain tumor is the pilocytic astrocytoma (PA). Approximately 15 percent of all PAs are linked to neurofibromatosis 1 (NF1), a genetic condition that causes childhood brain tumors and is a primary focus of Gutmann's research. However, the genetic basis for the majority of PAs is unexplained.

... more about:
»PAS »brain tumor »distinct

In the new study, Gutmann led six laboratories in the most detailed genetic analysis of PAs to date.

"We were hoping to identify genes that contribute to the formation of these tumors and find indicators that might help us predict which tumors will be relatively well-behaved and which will be more aggressive," Gutmann says.

Previous studies have failed to produce any solid leads on the genetic alterations that predispose children to PAs.

"It should be recognized that the genetic alterations in this tumor may be very subtle," Gutmann notes. "When we looked at gene activity levels in the tumors as a function of brain location, though, a very interesting pattern began to emerge."

Cells in different parts of the brain carry the same genes, but they also contain factors that modify the use of those genes, suppressing some genes and activating others to allow the cells to take on specialized characteristics as the brain matures. These changes in gene activity levels are called changes in gene expression.

The researchers found that tumors arising in different regions of the brain retain distinct patterns of gene expression. These patterns provided genetic fingerprints or bar codes for the location of PAs, as well as for another glial cell tumor called an ependymoma. In addition, scientists also detected these distinct patterns of expression in normal glia and stem cells from these brain locations, suggesting that genetic fingerprints can be used to identify the potential origins of brain tumors.

"There's been a movement in recent years to link normal brain development to pediatric neuro-oncology, and these findings affirm that as a necessary approach," Gutmann says. "We won't fully understand the causes of pediatric brain tumors until we consider them in the context of factors that shape the development and specialization of different brain regions."

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: PAS brain tumor distinct

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>