Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Facility for Structural Biology to investigate the molecules of life with powerful synchrotron radiation

02.02.2007
EMBL Hamburg builds an Integrated Facility for Structural Biology at PETRA-III - EMBL@PETRA-III

The German Federal Ministry for Education and Research (BMBF) has awarded 8.8 Million Euro to the Hamburg Outstation of the European Molecular Biology Laboratory (EMBL) for the construction of an Integrated Research Facility for Structural Biology at the new PETRA-III storage ring of the German Synchrotron Research Centre (DESY), named EMBL@PETRA-III. The new facility will comprise a complete and automated pipeline for structural investigations of proteins and other biological molecules using the high-energy X-rays of PETRA-III, soon to be one of the world’s most powerful radiation sources. The new addition to EMBL Hamburg’s existing structural biology facilities will start operations in 2010.

X-rays are an extremely powerful tool in the life sciences. The crucial molecules that determine our life, such as proteins and DNA, are too small to be observed with even the most sophisticated light microscopes. At EMBL Hamburg, structural biologists use the high-energy radiation of DESY’s synchrotron to generate three-dimensional images and to study the structure of biological molecules. Often the high-resolution images of proteins involved in diseases serve as the starting-point for the development of new drugs. In the last four years EMBL Hamburg has for example solved the structure of over 30 proteins involved in causing tuberculosis and has identified several potential drug targets.

“PETRA-III will be one of the world’s strongest synchrotron rings with leading optical parameters,” says Matthias Wilmanns, Head of EMBL Hamburg, “but to foster the use of this radiation efficiently for the life sciences it needs technical skills and experience. EMBL Hamburg has developed great expertise practicing research in structural biology for over 30 years and coordinating several big EU projects in the field. Now we will bring together the cutting-edge technology provided by DESY and our expertise in the life sciences in the new Integrated Facilities for Structural Biology at PETRA-III to make them available to the scientific community.”

... more about:
»Life »PETRA-III »Radiation »Synchrotron

EMBL@PETRA-III and its services will be accessible to structural biologists from all around the world and user time will be allocated exclusively according to scientific merit. The new facilities at PETRA-III will allow to investigate protein machines of unprecedented complexity and size and provide the unique opportunity to carry out pilot experiments in life sciences in preparation for the future X-ray Free Electron Laser at DESY.

EMBL@PETRA-III will feature three state-of-the-art synchrotron radiation beamlines. One of them will be dedicated to “Small Angle X-ray Scattering”(SAXS), which studies proteins or protein complexes in solution to infer their overall shape and gain knowledge about dynamic processes in biology. The other two beamlines will be used for crystallography, a technique to determine the structure of crystallised proteins. The extremely focused synchrotron beams of PETRA-III will reveal atomic details of crystals as small as the fraction of a micrometer for the first time. The new facility will also house infrastructure for high-throughput protein crystallisation, sample preparation and characterisation and data processing, allowing all steps of structural investigation of molecules to be carried out under one roof. This will greatly speed up the investigation of molecules relevant to life and disease.

“This unique facility will allow us to go beyond current physical limitations and to tackle problems that were out of reach in the past,” says Thomas Schneider, Project Coordinator of EMBL@PETRA-III. “It will not only strengthen Europe’s role as a key player in the life sciences, but will also further raise the profile of the city of Hamburg in the European research landscape.”

Anna-Lynn Wegener | alfa
Further information:
http://www.embl.org/aboutus/news/press/2007/01feb07/index.html

Further reports about: Life PETRA-III Radiation Synchrotron

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>