Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leeches ferry infection among newts

01.02.2007
Parasite-carrying bloodsucking leeches may be delivering a one-two punch to newts, according to biologists, who say the discovery may provide clues to disease outbreaks in amphibians.

The findings could also lead to a better understanding of diseases affecting humans, such as malaria, chagas disease and sleeping sickness. All these diseases are transmitted through a vector, an organism that spreads disease from one animal to another.

The researchers found evidence for leech-borne transmission of a little-known fungus-like organism of the genus Ichthyophonus, which infects the muscles of red-spotted newts and other amphibians in North America. It does not appear to kill amphibians but might affect their ability to reproduce. "This is the first evidence that newts are getting infected through the bites of leeches," said Thomas R. Raffel, a postdoctoral researcher at Penn State's Center for Infectious Disease Dynamics, and the study's lead author.

Early infections in the newts appear as clusters of small dark dots under the skin, which can later develop into a large area of swollen muscle. The swollen muscle contains many spores (also called spherules), each of which contains hundreds of infectious cells called endospores. Raffel and his colleagues think that the infection is transmitted when one of these spores bursts open and releases its endospores onto the mouthparts of a feeding leech. Their findings are outlined in the January issue of Journal of Parasitology.

... more about:
»Infection »Raffel »amphibian »newt

In 2004, Raffel and his Penn State colleagues Peter J. Hudson, professor of biology, and James R. Dillard, then an undergraduate student and now with the Pennsylvania Department of Environmental Protection, conducted a survey of 16 red-spotted newt populations in lakes and ponds near Centre County, Pa. They found the disease in 12 of the 16 newt populations.

A strong correlation between infection prevalence and numbers of bloodsucking leeches, plus the finding that the infection is more likely to appear on commonly bitten body parts, suggested that leeches were the most likely vehicle transferring the disease. Further work showed that new infections generally begin at sites recently bitten by leeches, which leave behind a characteristic patch of blood under the skin.

Raffel, whose work is funded by the National Science Foundation, says "when a leech sticks its proboscis into an infected newt, either the mechanical action of the probe or the anti-inflammatory chemicals injected by the leech, could be used by the parasite as a cue to release its packet of spores. The spores could then latch on to the leech's proboscis, and the infection would be passed along to the next newt the leech bites."

The researchers point out that Ichthyophonus might not be as contagious as other leech-transmitted amphibian parasites. That is because this particular parasite lodges itself in muscle tissue instead of blood. A leech would have to be feeding right on top of a newt's infected muscle in order to transmit the infection. However, it is still unclear if the spores are multiplying within the leech, or simply ferrying on its proboscis.

Even though the infection is not fatal to the newts, it could affect their numbers, says Raffel . "When newts get infected, they often stop breeding, apparently to shore up their immune system to fight off the disease. But that comes at the cost of having fewer offspring," he adds.

Findings from the study may also indicate that human activities could lead to increases in the infection, since these leeches are most abundant in wetlands with lots of aquatic vegetation.

The Penn State researchers say fertilizer-laden wastewater from farms and other sources often causes increased growth of aquatic vegetation in ponds, providing leeches with a firmer footing. "It could lead to more leeches and create potential hotspots of disease," Raffel noted.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.cidd.psu.edu/
http://www.psu.edu

Further reports about: Infection Raffel amphibian newt

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>