Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prion disease treatable if caught early

01.02.2007
Studies in mice have indicated that the effects of prion disease could be reversed if caught early enough.

The researchers said that their findings support developing early treatments that aim to reduce levels of prion protein in the brains of people with prion disease. Also, they said that their findings suggest testing the efficacy of treatments in a new way: by analyzing their cognitive effects in prion-infected mice.

The researchers, Giovanna Mallucci and colleagues, reported their findings in the February 1, 2007 issue of the journal Neuron, published by Cell Press.

Prion disease—such as the version of Creutzfeldt-Jakob disease believed to be contracted from cattle with "mad cow disease"—is caused by aberrant, infective proteins. It has been thought that the disease is untreatable.

... more about:
»brain cell »cognitive »deficits »findings

However, in previous studies with prion-infected mice, Mallucci and colleagues found that early brain degeneration can be reversed if prions are depleted in neurons.

In the new studies published in Neuron, they established that cognitive and behavioral impairments—which appear early in humans with prion disease—can be reversed if prion depletion is done early. What’s more, they found that the neurological pathology of the disease is reversed along with the cognitive and behavioral deficits.

In their studies, the researchers measured the effects of prion disease on the animals’ ability to discriminate novel objects in their cage and on normal burrowing behavior. In both cases, deficits in those abilities appeared early in the disease. Also, studies of the animals’ brain tissue revealed a parallel impairment of signaling among brain cells.

However, when the researchers manipulated the animals to deplete their brains of the prion protein, their memory ability and burrowing behavior recovered. Importantly, found the researchers, the signaling among brain cells also recovered.

"Overall, we conclude that the dramatic benefits to neuronal function and survival in prion-infected mice we have shown here support targeting neuronal [prion protein] directly as a therapeutic approach," wrote Mallucci and colleagues.

"Our findings of early reversible neurophysiological and cognitive deficits occurring prior to neuronal loss open new avenues in the prion field," they wrote. "To date, prion infection in mice has conventionally been diagnosed when motor deficits reflect advanced neurodegeneration. Now the identification of earlier dysfunction helps direct the study of mechanisms of neurotoxicity and therapies to earlier stages of disease, when rescue is still possible.

"Eventually it may also enable preclinical testing of therapeutic strategies through cognitive endpoints. These data now lead to the hope that early intervention in human prion disease will not only halt clinical progression but allow reversal of early behavioral and cognitive abnormalities," wrote the scientists.

Erin Doonan | EurekAlert!
Further information:
http://www.cell.com

Further reports about: brain cell cognitive deficits findings

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>