Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Create New Method for Uncovering Natural Products from Mystery 'Orphan Genes'

29.01.2007
Approach leads to identification of compound with potential benefits in agriculture through crop protection

Microorganisms have a proven track record for producing powerful molecules useful in antibiotics, as anticancer agents and in treating human diseases.At times, researchers studying the genomes of these microorganisms have come across sections of DNA for which scientists cannot determine what is ultimately produced. It's not clear what might be created from these so-called "orphan gene clusters" and if those end products might carry beneficial qualities.

Scientists at Scripps Institution of Oceanography at UC San Diego have devised a new method for identifying the mysterious products of orphan gene clusters.

"In this new age of genomics, microorganisms have even more capacity to make exotic natural product molecules than we ever realized," said William Gerwick, a professor in Scripps Oceanography's Center for Marine Biotechnology and Biomedicine and the Skaggs School of Pharmacy and Pharmaceutical Sciences at UC San Diego. "However, sometimes we don't know how to find these products. We can see them in the genomic information but we can't necessarily find the resulting organic substances."

The method developed by Gerwick and his colleagues employs a novel combination of genomic sequence analysis and isotope labeling. The new "genomisotopic approach" is described in the new issue of Chemistry & Biology as the journal's featured cover paper.

Gerwick says the key to the genomisotopic approach lies in the combined power of bioinformatics—computer programming to predict the proteins as well as the component building blocks they will use to make the new mystery product—with the ability to provide building blocks containing distinctive isotope labels to cultures producing the mystery compound. The microorganism assimilates the isotope-tagged precursors, incorporates them into the mystery compound, thus enabling the researchers to "find" the mystery compound simply by looking for the isotope signature. According to the paper, the approach represents a valuable complement to existing genome "mining" strategies.

"This technique allows us to methodically and with a very well-defined strategy figure out and isolate the compounds that are produced from those orphan gene clusters," said Gerwick. "With the genomisotopic approach we're mapping out a metabolic process. We're watching the incorporation of the amino acid into a more complex natural products structure and visualizing it at the end by a combination of mass spectrometry and nuclear magnetic resonance spectroscopy."

The genomisotopic approach was born out of a failed experiment in Gerwick's laboratory. A student had attempted to clone the biosynthetic gene cluster for a certain compound. The student sequenced a stretch of DNA that initially appeared promising as the correct gene cluster, but ultimately proved not to be.

"So with that big stretch of DNA we scratched our heads and wondered, if it didn't make the compound we thought it did, what did it make?" said Gerwick. "We brainstormed and thought we could come up with an approach for finding out."

In addition to describing the genomisotopic approach, the Chemistry & Biology paper describes the identification of a compound of a previously unknown natural product discovered through the new method. Gerwick and his colleagues applied the approach and found what is now known as orfamide A, a new natural product that may prove beneficial in agriculture and crop protection due to its potential in suppressing plant diseases.

Gerwick says the new approach will now be applied to various organisms derived from the ocean, including marine bacteria.

In addition to Gerwick, the paper's coauthors include Harald Gross (Scripps and Oregon State University), Virginia Stockwell (Oregon State University), Marcella Henkels (U.S. Department of Agriculture), Brian Nowak-Thompson (Northland College) and Joyce Loper (U.S. Department of Agriculture).

The study was funded by the National Institutes of Health and the Microbial Genomic Sequencing Program of the U.S. Department of Agriculture Cooperative State Research, Education and Extension Service.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: approach compound genomisotopic microorganism

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>