Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disabling key protein may give physicians time to treat pneumonic plague

26.01.2007
The deadly attack of the bacterium that causes pneumonic plague is significantly slowed when it can't make use of a key protein, scientists at Washington University School of Medicine in St. Louis report in this week's issue of Science.

Speed is a primary concern in pneumonic plague, which kills in three to four days and potentially could be used in a terrorist attack. The bacterium that causes plague, Yersinia pestis, is vulnerable to antibiotics, but by the time an unusual infection becomes evident, Yersinia often has gained an unbeatable upper hand.

"By the time most doctors recognize an infection as plague, rather than the flu, it's already too late to begin antibiotic treatment," says senior author William Goldman, Ph.D., professor of molecular microbiology. "That makes pneumonic plague a concern both because of its rare natural outbreaks, one of which began in the Congo in 2005, and because of its potential use as a bioweapon."

Yersinia is best known for causing the Black Death in the Middle Ages in Europe, when historians estimate it killed a third or more of the population. Depending on how Yersinia is introduced, the versatile pathogen can modify itself to infect the lungs (pneumonic plague), the lymph glands (bubonic plague), or the bloodstream and organs (septicemic plague). Bubonic plague was spread by bites from infected fleas; pneumonic plague can spread through droplets of moisture expelled by coughing and sneezing.

... more about:
»Goldman »Infection »PLA »Yersinia »antibiotic »pneumonic

With pilot project funding from the Midwest Regional Center for Excellence in Biodefense and Emerging Infectious Diseases Research, Wyndham Lathem, Ph.D., a postdoctoral fellow in Goldman's laboratory, developed a mouse model of pneumonic plague and showed that it had many similarities to human infection. In mice, pneumonic plague causes the lungs to fill up with a fluid composed of bacteria, inflammatory cells and other substances. Shortly before infected mice die, the bacteria also begin showing up in the spleen and other organs, spreading there via the bloodstream.

Previous research had suggested that pneumonic plague might be spreading in the body in part through use of a protein known as plasminogen activator (PLA). The protein is a protease, which degrades other proteins. Goldman, Lathem and colleagues thought PLA might be a tool Yersinia uses to break open protective blood clots that form around pockets of infection. This clotting response is believed to be a way the body attempts to limit the spread of infections: Surround a pathogen with blood clots, and it can't reproduce and spread. Scientists speculated that breaking open the clots might be how Yersinia opened a path from the lungs into the blood.

When scientists infected mice with Yersinia that lacked PLA, though, they found infection ebbing in the lungs but spreading to the spleen. The mice still died, but it took them several days longer to do so. They concluded that the aggressive pneumonia and rapid death of pneumonic plague appears to depend on the activity of PLA.

"Pharmaceutical companies have large libraries of protease inhibitors, so hopefully someone will start the search soon for an inhibitor of PLA that is specific and non-toxic enough to be used as an adjunct treatment," Goldman says. "That might give us enough time to use antibiotics to save patients afflicted with pneumonic plague." Goldman hopes to conduct follow-up studies to learn more about how plague exploits PLA.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Goldman Infection PLA Yersinia antibiotic pneumonic

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>