Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Coated nanoparticles solve sticky drug-delivery problem

26.01.2007
Researchers take cues from viruses to get treatment through body's protective

The layers of mucus that protect sensitive tissue throughout the body have an undesirable side effect: they can also keep helpful medications away. To overcome this hurdle, Johns Hopkins researchers have found a way to coat nanoparticles with a chemical that helps them slip through this sticky barrier.

During experiments with these coated particles, the researchers also discovered that mucus layers have much larger pores than previously thought, providing a doorway that should allow larger and longer-acting doses of medicine to reach the protected tissue.

The team's findings were reported this week in the Early Online Edition of Proceedings of the National Academy of Sciences.

... more about:
»Hanes »coat »mucus »nanometers »nanoparticle
The discoveries are important because mucus layers, which trap and help remove pathogens and other foreign materials, can block the localized delivery of drugs to many parts of the body, including the lungs, eyes, digestive tract and female reproductive system. Because of these barriers, doctors often must prescribe pills or injections that send drugs through the entire body, an approach that can lead to unwanted side effects or doses that are too weak to provide effective treatment.

"Mucus barriers evolved to serve a helpful purpose: to keep things out," said Justin Hanes, an associate professor of chemical and biomolecular engineering who supervised the research. "But if you want to deliver medicine in a microscopic particle, they can also keep the drugs from getting through. We've found a way to keep helpful nanoparticles from sticking to mucus, and we learned that the openings in the mucus 'mesh' are much larger than most people expected. These findings set the stage for a new generation of nanomedicines that can be delivered directly to the affected areas."

To get its particles past the mucus, Hanes' team studied an unlikely model: viruses. Earlier research led by Richard Cone, a professor in the Department of Biophysics at Johns Hopkins, had established that some viruses are able to make their way through the human mucus barrier. Hanes and his colleagues decided to look for a chemical coating that might mimic the characteristics of a virus.

"We found that the viruses that got through had surfaces that were attracted to water, and they had a net neutral electrical charge," said Samuel K. Lai, a Johns Hopkins chemical and biomolecular engineering doctoral student from Canada and Hong Kong who was lead author of the journal article. "We thought that if we could coat a drug-delivery nanoparticle with a chemical that had these characteristics, it might not get stuck in the mucus barrier."

To make their nanoparticles behave like viruses, the researchers coated them with polyethylene glycol, PEG, a non-toxic material commonly used in pharmaceuticals. PEG dissolves in water and is excreted harmlessly by the kidneys.

The researchers also considered the size of their nanoparticles. Previous studies indicated that even if nanoparticles did not stick to the mucus, they might have to be smaller than 55 nanometers wide to pass through the tiny openings in the human mucus mesh. (A human hair is roughly 80,000 nanometers wide.) Using high-resolution video microscopy and computer software, the researchers discovered that their PEG-coated 200-nanometer particles could slip through a barrier of human mucus.

They then conducted further tests to see how large their microscopic drug carriers could be before they got trapped in the mesh. Larger nanoparticles are more desirable because they can release greater amounts of medicine over a longer period of time. "We wanted to make the particles as large as possible," said Hanes, who also serves as director of therapeutics for the Institute for NanoBioTechnology at Johns Hopkins. "The shocking thing was how fast the particles that were 500 nanometers wide moved through the mucus mesh. The work suggests that the openings in the mucus barrier are much larger than originally expected by most. And we were also surprised to find that the larger nanoparticles (200 and 500 nanometers wide) actually moved through the mucus layer more quickly than the smaller ones (100 nanometers wide)."

This has important implications, Hanes said, because a 500-nanometer particle can be used to deliver medicine to a targeted area, released over periods of days to weeks. Larger particles also allow a wider array of drug molecules to be efficiently encapsulated. He and his colleagues believe this system has great potential in the delivery of chemotherapy, antibiotics, nucleic acids and other treatment directly to the lungs, gastrointestinal tract and cervicovaginal tract.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu/chbe/
http://www.jhu.edu/~cheme/hanes/

Further reports about: Hanes coat mucus nanometers nanoparticle

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>