Thinking with the spinal cord?

The research group behind the surprising results consists of Professor Jørn Hounsgaard and Post.doc Rune W. Berg from the University of Copenhagen, and Assistant Professor and PhD Aidas Alaburda from the University of Vilnius. The group has shown that spinal neurons, during network activity underlying movements, show the similar irregular firing patterns as seen in the cerebral cortex.

New approach

– Our findings contradict conventional wisdom about spinal cord functions, says Rune W. Berg from Department of Neuroscience and Pharmacology at the Faculty of Health Sciences.

Until now, the general belief was that the spinal networks functioned mechanically and completely without random impulses. The new discovery enables researchers to use the theory on cortical networks to explore how spinal cords generate movements.

Still puzzled by movement

How humans are able to move at all remains a puzzle. Our muscles are controlled by thousands of nerve cells in the spinal cord. This entire, complex system must work as a whole in order to successfully create a single motion. The new research shows that even if we repeat a certain motion with high accuracy, the involved nerve cells never repeat their activity patterns. This particular observation reflects the organisation of the nerve cells of the cerebral cortex.

Media Contact

Anne Dorte Bach alfa

More Information:

http://inf.cms.ku.dk/english

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Acetylation: a Time-Keeper of glucocorticoid Sensitivity

Understanding the regulatory mechanism paves the way to enhance the effectiveness of anti-inflammatory therapies and to develop strategies to counteract the negative effects of stress- and age-related cortisol excess. The…

Partners & Sponsors