Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical switch triggers critical cell activities

18.01.2007
St. Jude study shows simple thioester chemical bond acts like a switch that activates protein movements among three enzymes, triggering specific, critical biochemical activities inside the cell

The freeze-frame image of a molecular relay race, in which one enzyme passes off a protein like a baton to another enzyme, has solved a key mystery to how cells control some vital functions, according to investigators at St. Jude Children's Research Hospital. A report on this work appears in the January 14 advanced online publication issue of Nature.

The St. Jude discovery explains how a simple chemical link between molecules called a thioester bond acts like a switch to control the handoff of a protein called NEDD8 like a baton from one enzyme called E1 to a second enzyme called E2. When attached to E2, this thioester bond allows E2 to bind to a third enzyme called E3, which then helps E2 hand NEDD8 off to the ultimate target molecule at the end of the race. In the cell, this NEDD8 relay race triggers a number of biochemical reactions, one of which takes the brakes off cell division, allowing cells to multiply, according to the researchers. These thioester bonds are chemical links between two biological molecules that form when a sulfur atom on one of the molecules binds to an atom that is part of the other molecule.

Understanding how the thioester bond switch works is important not only because it explains a critical step in the NEDD8 hand-off from E1 to E2, but also because enzymes related to E1 and E2 run similar relays with other important protein batons, said Brenda Schulman, Ph.D., associate member of the St. Jude Structural Biology and Genetics and Tumor Cell Biology departments. "Our study shows that this simple switch could control comparable relays in charge of several different biochemical activities that keep cells alive and functioning normally." Schulman, a Howard Hughes Medical Institute (HHMI) investigator, is senior author of the Nature report.

... more about:
»E1' »Investigator »NEDD8 »baton »biochemical

Scientists already knew that E1 momentarily juggles two NEDD8 molecules at once, holding them in two different "hands." They also knew that E2 takes the NEDD8 that is in E1's left hand; and that the other NEDD8 then hops over from the right hand to E1's empty left hand. That leaves the right hand free to grab yet another NEDD8. By continually passing the NEDD8 proteins from the right hand to the left hand and on to E2, E1 keeps a relay of these batons flowing. In turn, that keeps the specific biochemical cascade triggered by NEDD8 in action.

But in order for the handoff to work, E2 must first insert itself into a docking site on E1, next to E1's left hand, so it can grab NEDD8, Schulman explained. However, the E2 docking site is initially turned away from E1: so if E2 hopped into the docking site at that point, it would be too far away from NEDD8 to grab it, she noted. And that was the puzzle the St. Jude researchers solved.

Specifically, the St. Jude study showed that when NEDD8 forms a thioester bond with E1's left hand, it squeezes itself next to the E2 docking site, which is facing away from NEDD8, according to Danny Huang, Ph.D., HHMI postdoctoral research associate and Harold Hunt, HHMI research technologist,. These researchers in Schulman's laboratory did most of the work on this project.

In such close quarters, NEDD8 bumps the docking site, making it rotate like the paddle wheel on a riverboat that carries a notch on one of its paddles. As the docking site rotates, it carries the notch all the way around to the other side, next to NEDD8. As soon as the notch of the docking site is next to NEDD8, the notch catches E2, so E2 is bound to the notch, right next to NEDD8. NEDD8 then breaks its thioester bond with E1 and reforms it with E2. As soon as NEDD8 breaks its thioester bond to E1 and forms a thioester bond with E2 instead, E2 falls away from E1 taking NEDD8 with it. Then E2 can interact with E3 to pass NEDD8 onto the target.

The investigators were able to make sense of this combination of relay race and rotating paddle wheel by using a technique called X-ray crystallography. In X-ray crystallography, scientists bombard crystals of proteins with X-rays and use the patterns formed by beams bouncing off the crystals to create computer-generated 3-D images of the molecules.

The goal was to create a freeze-frame image that captured the fleeting moment when E2 is next to NEDD8, just before it falls off and carries NEDD8 with it. To do that, Schulman's team first had to prevent E2 from binding with NEDD8, so it would not fall away from E1. The investigators used a mutated form of E2 that binds to the docking site and gets near NEDD8, but cannot form a thioester bond with it. The team reasoned that if E2 could not bind to NEDD8, it would be stuck on the docking site with nothing to do and nowhere to go. An X-ray crystallography image could then capture that moment.

Summer Freeman | EurekAlert!
Further information:
http://www.stjude.org
http://www.stjude.org/media/0,2561,453_2137_3985,00.html

Further reports about: E1' Investigator NEDD8 baton biochemical

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>