Dual enzymatic activity of RECQ1 explained by different quaternary structures

This reaction is driven by proteins called helicases, which make use of ATP as fuel to unwind the DNA duplex. The RecQ family of helicases helps maintain genome stability. Recent studies have shown that RecQ helicases, in addition to promoting DNA unwinding, can also catalyze the opposite reaction: the pairing of the partially unwound DNA duplexes.

The mechanisms underlying the regulation of this dual enzymatic activity are unknown, however. In a new study published online in the open access journal PLoS Biology, Laura Muzzolini, Alessandro Vindigni, and colleagues describe two structural forms of the human RECQ1 helicase, a large oligomeric complex composed of five or six subunits and a smaller form consistent with only one or two molecules.

An initial view of the three-dimensional structure of the larger complex is provided, including a demonstration that this state is associated with DNA strand annealing, whereas the smaller form carries out DNA unwinding. The functional switch from strand-annealing to DNA unwinding is controlled by ATP binding, which promotes the dissociation of the larger, higher-order complexes. By providing insight into the mechanisms regulating RecQ helicase activity, this study opens a new window into a fundamental aspect of DNA metabolism.

Citation: Muzzolini L, Beuron F, Patwa rdhan A, Popuri V, Cui S, et al. (2007) Different quaternary structures of human RECQ1 are associated with its dual enzymatic activity. PLoS Biol 5(2): e20. doi:10.1371/journal.pbio.0050020.

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors