Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rapid, Low-Cost DNA Testing

09.01.2007
Improving Health and Catching Criminals

Professor Lewis Rothberg of the University of Rochester Chemistry Department received a NYSTAR grant in August 2006 to continue working on a recent discovery by Huixiang Li, a research associate in his group: how to rapidly test DNA to improve our health and make sure we're drinking clean water and eating uncontaminated food. In fact, his new method can be used to help forensics labs identify criminals, test ponds and pools before children swim in them, and identify harmful genetic sequences in medical research, to name only a few applications. Rothberg's innovative procedure quickly and inexpensively identifies genetic sequences in any sample of DNA.

The technology is a novel fluorescent DNA screening assay, which rapidly determines whether specific DNA target sequences are present in an analyte. In simple terms, the analyte contains the DNA target sequences as well as other DNA sequences, and the assay filters out only the targets. Professor Rothberg's assay is based on the electrostatic properties of DNA.

The principle underlying the method is that single-stranded DNA and double-stranded DNA have significantly different affinities for attaching to ionically charged gold nanoparticles. Because ions have electric charges, having gained or lost electrons, they attract their opposites. An anion with a negative electric charge will attract positive charges, a cation with a positive charge will attract negative charges. Single-stranded DNA adsorbs on negatively charged citrate ions on the gold nanoparticles while double-stranded DNA does not. Given that both single-stranded and double-stranded DNA are (nominally) negatively charged, this proven phenomenon intrigues the research group.

The new assay determines whether a fluorescently-tagged short probe sequence of single-stranded DNA matches a sequence in the target analyte. When it does not, the fluorescently tagged probe adsorbs on a gold nanoparticle and its fluorescence is quenched. If the probe sequence is able to hybridize to the target, it will not adsorb on the gold and its fluorescence persists.

The new method is simple and effective. It costs very little, and it's very quick.

The most widespread and common method of screening DNA is called gel electrophoresis. Each test takes 1 hour and can cost as much as $1.00. Setting up a lab for gel electrophoresis requires a capital expenditure of $5,000. By contrast, Professor Rothberg's technique only requires 5 minutes, and it costs approximately $0.05 (literally five cents) per test. The capital expenditure to set up a lab with the new technique is only $600.

It's as simple as that, yet nobody's ever done it before. The method is so new that the University of Rochester filed patents for it in 2004 and 2006. In May 2005, Professor Rothberg created a company called Diffinity Genomics, Inc. with two partners to further study and commercialize his technique.

Professor Rothberg's method is part of a much larger process that analyzes DNA. First, a technician extracts the DNA from the blood, tissue, or food. This typically take up to an hour. Second, there is generally not enough DNA to analyze, so it must be chemically amplified. This also takes apprximately one hour. The new process comes after these two steps, saving a final hour of work for the technician, who ordinarily would be doing gel electrophoresis.

Perhaps more important than the savings in time and money, the new method works to determine single-base mutations in DNA, whereas gels cannot do this without even further processing. Professor Rothbergs concludes, "This could be very important for applications in personalized medicine where a particular DNA sequence will be linked to a prescribed therapy. In fact, we see this happening already."

For further details, see:

Li, H., Rothberg, L.J., "Label-free colorimetric detection of specific sequences in genomic DNA amplified by polymerase chain reaction," J. Am. Chem. Soc. 2004, 126, 10958-10961.

Li, H., Rothberg, L.J., "Rapid DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles," Anal. Chem. 2004, 76, 5414-5417.

Dr. Lewis Rothberg | EurekAlert!
Further information:
http://chem.rochester.edu/~ljrgrp/

Further reports about: DNA DNA sequence Rothberg Rothberg' gold nanoparticle nanoparticle

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>