Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover How Body Fights to Control Spread of Cancer

09.01.2007
Scientists at the University of Liverpool have found how two molecules fight in the blood to control the spread of cancer cells.

Researchers discovered that a large protein, which forms a protective shield around cancer cells and prevents them from causing secondary tumours, is attacked by a small protein that exists in the blood.

In diseases such as breast, lung and colorectal cancer, infected cells lose growth control and eventually form tumours at these sites. If caught early these tumours can be effectively removed surgically. However, when the cancer cells have invaded the blood, the effectiveness of surgery is reduced.

Cancerous cells that have entered the blood, however, are still prevented from causing further disease by the protective shield of a protein called MUC1 in which the cancerous cells are eventually destroyed by our immune system. Scientists have now discovered how this protective shield is broken down, allowing cancer to spread throughout the body.

... more about:
»cancer cells »protective »tumours

Dr Lu-Gang Yu, from the University’s School of Clinical Sciences, explains: “MUC1 on the cell surface prevents the cancer cells from attaching to the blood vessel wall which causes secondary tumours. We have discovered that a small protein called galectin-3, attacks MUC1 and breaks up its protective shield, forcing large areas of the cancer cell to become exposed. The exposed areas of the cell allow the cancer to attach to the blood vessel wall. The cancer cells then eventually penetrate the blood wall to form tumours at secondary sites.

“The attachment of cancer cells to the blood vessel wall is one of the key steps in the spread of cancer. It has been known for a few years that galectin-3 concentration is significantly higher in the blood of cancer patients than in healthy people but until now scientists did not know whether this increase played any role in the spread of cancer. Our study indicates that galectin-3 may play a critical role and may have significant implications for future developments of drugs for the treatment of the disease.”

Dr Yu’s work is published in the Journal of Biological Chemistry.

Samantha Martin | alfa
Further information:
http://www.liv.ac.uk/newsroom

Further reports about: cancer cells protective tumours

More articles from Life Sciences:

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

nachricht Removing toxic mercury from contaminated water
21.11.2018 | Chalmers University of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>