Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybrid molecule causes cancer cells to self-destruct

08.01.2007
Lab tests of sugar and short-chain fatty acid combo point to new strategy to combat disease

By joining a sugar to a short-chain fatty acid compound, Johns Hopkins researchers have developed a two-pronged molecular weapon that kills cancer cells in lab tests. The researchers cautioned that their double-punch molecule, described in the December issue of the journal Chemistry & Biology, has not yet been tested on animals or humans. Nevertheless, they believe it represents a promising new strategy for fighting the deadly disease.

"For a long time, cancer researchers did not pay much attention to the use of sugars in fighting cancer," said Gopalan Sampathkumar, a postdoctoral fellow in the university's Department of Biomedical Engineering and lead author of the journal article. "But we found that when the right sugar is matched with the right chemical partner, it can deliver a powerful double-whammy against cancer cells."

Sampathkumar and his colleagues built upon 20-year-old findings that a short-chain fatty acid called butyrate can slow the spread of cancer cells. In the 1980s, researchers discovered that butyrate, which is formed naturally at high levels in the digestive system by symbiotic bacteria that feed on fiber, can restore healthy cell functioning.

Efforts to use butyrate as a general drug for tumors elsewhere in the body, however, have been hindered by the high doses of the compound needed to effectively eradicate cancer. To get around this problem, scientists have tried to make butyrate more potent by modifying it or joining it to other compounds. Usually, the results have been disappointing because the molecular partner added to butyrate to improve delivery to the cancer cells often produced unsafe side effects.

In some of the less successful experiments, designed to avoid toxic side effects, researchers used innocuous sugar molecules such as glucose to carry butyrate into the cells. The Johns Hopkins team tried a different tack. "We didn't think they chose the right partner molecule," said Kevin J. Yarema, an assistant professor of biomedical engineering who supervised the project. "Our insight was to select the sugar partner to serve not just as a passive carrier but as additional ammunition in the fight against cancer."

The researchers focused on a sugar called N-acetyl-D-mannosamine, or ManNAc, for short. The team created a hybrid molecule by linking ManNAc with butyrate. The hybrid easily penetrates a cell's surface, then is split apart by enzymes inside the cell. Once inside the cell, ManNAc is processed into another sugar known as sialic acid that plays key roles in cancer biology, while butyrate orchestrates the expression of genes responsible for halting the uncontrolled growth of cancer cells.

Although the study of the exact molecular mechanism is in its early stages, the researchers believe the separate chemical components work together to bolster the cancer-fighting power of butyrate. The double attack triggers cellular suicide, also called apoptosis, in the cancer cells.

To find out whether this butyrate-ManNAc hybrid alone would produce the positive results, the researchers tested three other sugar-butyrate combinations and a butyrate salt compound with no sugar attached. The four other formulas and the butyrate-ManNAc hybrid were each added to lab dishes containing cancer cells. After three to five days, cancer growth had slowed in all of the dishes. After 15 days, however, cancer growth had resumed in dishes treated with four of the compounds. But in samples treated with the butyrate-ManNAc hybrid, all of the cancer cells had died.

The researchers also wanted to find out whether administering the two parts of the hybrid independently would achieve the same result. But in these experiments, the cancer cells did not self-destruct. The researchers suspect this is because the hybrid molecules more easily penetrate the surface of the cell than the individual chemicals. Once the components are inside, the researchers believe the partners help enzymes to resume the normal assembly of sugar molecules and correct aberrant gene expression patterns, two processes that go awry when cancer occurs.

Now that they've identified the butyrate-ManNAc molecule as a potential cancer fighter, the Johns Hopkins team members are expanding their research, looking for new drug-delivery methods and preparing for animal testing. The researchers believe the hybrid molecule will have minimal effect on healthy cells. Through the Johns Hopkins Technology Transfer Office, they have filed an application for a U.S. patent covering this class of compounds.

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu
http://www.bme.jhu.edu
http://www.functionalglycomics.org/

Further reports about: Cancer HYBRID butyrate butyrate-ManNAc cancer cells

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>