Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugars in liver found to clear fats from the bloodstream

05.01.2007
Maybe you ate a big, juicy steak for dinner last night, adding a large amount of fat – scientifically known as triglycerides – to your system. For one in ten of us, that could be a big problem.

Although we try to reduce fat in our diet, our bodies use it for energy. But patients with elevated levels of fat in their bloodstream – nearly 10 percent of Americans – are more likely to develop arthrosclerosis, or build-up of plaque in the arteries, which can lead to a heart attack or stroke.

In work with mice, researchers at the University of California, San Diego (UCSD) School of Medicine discovered a factor that could be responsible for many unexplained cases of elevated triglyceride levels.

In humans, this condition can be diabetes-related, diet-induced, or caused by drug interactions or chronic alcohol consumption. The problem can also run in families. But it turns out that another important factor is sugar – a complex one produced by all cells in the body called heparan sulfate, which is related to the anti-coagulant heparin.

The UCSD team found that heparan sulfate in the liver helps the body clear triglycerides from the blood. Their study, published in the January 1 issue of the Journal of Clinical Investigation, suggests that some patients with elevated triglyceride levels could have changes in heparan sulfate in the liver. The discovery could pave the way for new therapies for a major and growing medical problem.

"The work confirms that heparan sulfate in the liver plays a crucial role in clearing fat," said Jeffrey D. Esko, Professor of Cellular and Molecular Medicine at UCSD's School of Medicine. "These molecules clear triglycerides and cholesterol from the blood, working alongside the better known LDL receptors"

The UCSD researchers created a mouse model with a mutation of heparan sulfate, which resulted in elevated triglyceride levels, like those seen in many patients with diabetes. The researchers made mutations in only in the liver, because such mutations throughout all tissues would lead to the death of an embryo or death shortly after birth.

"By selectively mutating a single tissue in mice, in this case the liver, we avoided a lethal effect," said Esko. In the lab, the researchers combined the heparan sulfate mutation with a mutation in the LDL receptor, which has long known to be responsible for clearing cholesterol from the arteries. The UCSD team showed that heparan sulfate is involved in clearing not only triglycerides, but also cholesterol, from the blood.

"The finding, that the LDL receptor plus heparan sulfate work together to clear triglyceride and cholesterol-rich particles from the blood in a healthy person is very exciting," Esko said. The study suggests the possibility that mutations in one of 40 or so genes involved in production of heparan sulfate in the liver could result in high blood-fat levels and lead to complications such as arthrosclerosis, according to Esko.

In animal models with induced diabetes, changes in liver heparan sulfate – consistent with the UCSD researchers' findings – often appear. One of the team's next steps will be to induce diabetes in animals and examine the role of heparan sulfate in more detail.

"Such studies could lead to new drugs that change heparan sulfate in order to lower fat levels in patients," said Esko.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Esko HDL-cholesterol Triglyceride UCSD clear heparan liver sulfate

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>