Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newer biomarkers add small improvement in cardiovascular risk prediction to established risk factors

21.12.2006
Results of a long-term Framingham Heart Study investigation of multiple biomarkers for the prediction of first major cardiovascular events and death are reported in the December 21 issue of the New England Journal of Medicine (NEJM).

In the study, scientists followed 3209 participants in the Framingham Heart Study for 10 years and measured 10 of the most promising ‘novel’ biomarkers for predicting the risk of cardiovascular disease (CVD). The newer biomarkers such as natriuretic peptides, C-reactive protein, fibrinogen, urinary albumin, and homocysteine were compared with established risk factors such as high blood pressure, diabetes, and high cholesterol.

Measuring several biomarkers simultaneously, referred to as the "multimarker" approach, enabled the scientists to stratify risk. They found that persons with high multimarker scores had a risk of death four times as great and a risk of major cardiovascular events almost two times as great as persons with low multimarker scores. However, the use of multiple biomarkers added only moderately to the overall prediction of risk based on conventional risk factors.

"Multiple Biomarkers for the Prediction of First Major Cardiovascular Events and Death," was funded by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health. Daniel Levy, M.D., Director of the Framingham Heart Study, is available to comment on the study’s affirmation of the importance of traditional risk factors. He can also discuss the promise of new biomarkers --despite their modest enhancement over conventional risk factors-- in identifying individuals at high risk for cardiovascular events. In addition, Levy can comment on NHLBI’s recently announced large-scale biomarker project, a proposed biomarker consortium to conduct research on novel CVD biomarkers and develop new diagnostic tests to identify individuals at high risk for CVD and its risk factors.

NHLBI Communications Office | EurekAlert!
Further information:
http://www.nhlbi.nih.gov

Further reports about: Biomarker Cardiovascular risk factor

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>