Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atherosclerosis vaccine: time for the count-down

13.12.2006
Preliminary human safety trials involving human patients could start next year, EVGN scientist says.

The first vaccine against atherosclerosis is not far away in the future, according to Jan Nilsson, professor of Experimental Cardiology at Lunds Universitet in Malmö (Sweden) and EVGN member. Human clinical trials are likely to begin at the end of next year: they will be aimed at verifying the safety of a preparation, still under investigation in a laboratory model, made of antibodies obtained against selected fragments of oxidized Low Density Lipoproteins, or oxLDLs. LDLs are the major component of the “bad cholesterol”: their accumulation in the arterial wall causes inflammation and is a key factor in the onset of atherosclerosis.

The ability of oxidized LDL to trigger an immune response in the body was recognized a decade ago. Studies revealed that these particles can induce an autoimmune response: a response of the body against itself. But they also revealed that the immunization with oxLDL particles reduces the development of atherosclerosis hampering the deposition of atherosclerotic plaques. “Early as they were, these data prompted the scientists to consider vaccination as a feasible option not only for infectious diseases but also for atherosclerosis. And recent evidence confirming the involvement of the immune system in cardiovascular disease has strengthened the idea” says Nilsson, who has a long standing experience in studying atherosclerosis and the immune system.

Setting up a vaccine is not easy: the mechanism of action of the compounds is often unknown, and the reactions in a human being could be different from those observed in a laboratory model. Besides, not all the parts (or epitopes) of an immunogenic molecule trigger the same immune response. “We knew that oxidation alters the external structure of LDLs, but didn’t know which epitope was the most effective. So we tested several fragments (peptides) derived from the protein that stick on the surface of LDLs (apoB100), alone and in combination, to determine their efficacy on atherosclerosis”. What the scientists found was that a single fragment, and not the mix, exerted the strongest effect on the inflammation that surrounds the atherosclerotic plaques. “The injection of this fragment (a procedure called active immunization) triggered the production of antibodies, which determined the reduction of the atherosclerotic lesions up to 70% and the stabilization/regression of the plaques”.

... more about:
»LDL »Nilsson »Vaccine »atherosclerosis »oxLDL

These results induced the scientists to speculate that the direct administration (passive immunization) of an antibody against ApoB100 could be effective as well. So Nilsson and his team developed human antibodies with high affinity for apoB100 fragments, and proved that they can significantly reduce the atherosclerosis in a mouse model.

But what could happen in a human being? The mechanism of action of these antibodies is still unclear, and uncertainties remain on the activation of unwanted inflammatory responses. “We are aware that some points still need to be clarified. However, we expect to obtain the answers within a year, before moving into man” admits Nilsson.

Today, the most common treatment for atherosclerosis are statins. Unfortunately, these drugs do not directly affect oxLDLs, and a high percentage of patients who are treated with statins may still undergo a heart attack or stroke. The research strategy pursued by Nilsson and colleagues could therefore benefit high-risk individuals for whom the conventional treatments do not provide adequate protection.

The European Vascular Genomics Network (EVGN) is the first Network of excellence on cardiovascular disease funded by the European Commission under the 6th Framework Programme "Life sciences, genomics and biotechnology for health" (Contract Number: LSHM-CT-2003-503254).

The Conference is supported by an unrestricted educational grant from Laboratoires SERVIER.

Francesca Noceti | alfa
Further information:
http://www.evgn.org
http://www.ifom-ieo-campus.it

Further reports about: LDL Nilsson Vaccine atherosclerosis oxLDL

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>