Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light over the role of the hormone progesterone in breast cancer

13.12.2006
Progesterone is a female sex hormone known to regulate the growth of normal breast tissue while also seeming to be involved in breast cancer. Its exact role in the carcinogenic process, however, is still unclear.

But now, in work about to be published in the "Journal of Cellular Biochemistry", a team of Portuguese scientists shows that progesterone seems to sustain the formation of blood vessels, which, by supplying nutrients to the tumour cells, are vital for breast cancer progression. This finding has important implications not only for a better understanding of the disease, but also for present and future therapeutic approaches against it.

Breast cancer is the second most common cancer in the world with approximately 1 million of new cases every year, even if the disease tends to have a relatively favourable prognosis. One of the reasons for this is the fact that a majority of breast cancers are hormone-dependent, and treatments blocking these hormones (and consequently cancer progression) can be extremely effective, sometimes even more than chemotherapy.

In fact, ovarian hormones known to play an important role in the development of normal breast tissue - such as oestrogen and progesterone - also seem to be involved in breast cancer development, with 70 to 80% of primary breast tumours showing oestrogen and/or progesterone receptors in their cells. These receptors act as on-off switch; when the right molecule (in this case oestrogen or progesterone) binds to its specific receptor, the switch is turned on, leading, in the case of breast cancer, to disease progression. In result, anti-hormonal therapy (especially anti-oestrogen therapy), which blocks the hormones’ action, is widely used against the disease with good results.

But if oestrogen has been clearly associated with cancer growth, the role of progesterone in breast cancer (and consequently the importance and the specific mechanism of progesterone-blocking therapy) is much less clear.

But now Raquel Soares, Susana Guerreiro and Mónica Botelho from the University of Porto in Portugal found that breast cancer cells that respond to progesterone, produce, when exposed to the hormone, Platelet-derived growth factor A (PDGF-A) a protein known to stimulate cell growth and division. Furhermore, PDGF-A did not seem to act directly on the tumour cells, but was instead released into the space outside of the cell suggesting an effect on neighbouring cells.

Interaction between tumour cells and their environment is crucial for cancer progression and in fact PDGF-A has been suggested to be involved in the formation of new blood vessels (also called angiogenesis). Angiogenesis is a process crucial for cancer sustainability since without new blood vessels around the tumour site to supply nutrients, cancerous cells will starve and die. To test if PDGF-A could be in fact involved in the formation of blood vessels around breast cancer tumour sites, Soares and colleagues decided to analyse smooth muscle cells, which are known to be involved in this process while also have been described as having receptors for PDGF-A. And in fact, PDGF-A (and so progesterone) was found to increase the growth and viability of smooth muscle cells confirming a role to both these molecules supporting angiogenesis.

What Soares and colleagues’ work strongly suggest is that progesterone stimulates cancer development by helping the formation and stability of blood vessels formed adjacent to the tumour cells. These new blood vessels are, not only crucial to the supply of nutrients to cancer cells, but also important “exits” for these cells to spread throughout the body. These results show how current anti-progesterone therapies block cancer progression by targeting not only progesterone-dependent cancer cells but also the formation of new blood vessels, and emphasise the importance of continue to pursue anti-progesterone therapeutics.

Piece researched and written by:
Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.linacre.ox.ac.uk
http://www3.interscience.wiley.com/cgi-bin/abstract/112737747/ABSTRACT

Further reports about: PDGF-A blood vessel formation hormone oestrogen progesterone progression receptor

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>