Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV-1 kills immune cells in the gut that may never bounce back

06.12.2006
People with HIV have been living longer, healthier lives since the development of highly active antiretroviral therapy (or HAART) in 1995.

In fact, most patients on the drug regimen do so well that, according to blood tests, their immune cells appear to return to pre-HIV levels. But two new studies from Rockefeller University and the Aaron Diamond AIDS Research Center (ADARC) show that the immune cells in other body tissues may never rebound, suggesting the need for additional ways to monitor immune system health, and the need for hypervigilance as HIV-positive patients live into their forties, fifties, sixties and beyond. The findings are reported in today's issue of PLoS Medicine and online in the Journal of Virology.

Prior research had shown that, just two to four weeks after contracting HIV-1, the lymphoid tissue layer in the mucous membrane of a patient's gastrointestinal (GI) tract can lose up to 60 percent of its CD4 memory T cells -- immune cells responsible for recognizing invaders and priming other cells for attack. Intrigued, Martin Markowitz, an Aaron Diamond Professor at Rockefeller University and a staff scientist at ADARC, wanted to know whether this loss was reversible, and whether giving patients HAART during the early infection period helped restore these cells to the GI lining the way it restored them to the blood itself.

In a paper published today in PLoS Medicine, Markowitz, Rockefeller researcher and clinical scholar Saurabh Mehandru, and their colleagues report on a trial of 40 HIV-1 positive patients who began treatment with HAART shortly after contracting the virus -- during the acute early infection phase -- and who they followed from one to seven years. The researchers found that although the blood population of CD4 T cells rebounded to normal levels, a subset of the GI tract population remained depleted in 70 percent of their subjects.

... more about:
»CD4 »HIV »HIV-1 »Markowitz »T cells »tract

"If we sample the blood, it only has two percent of the total volume of these cells. It doesn't give us the whole picture," Markowitz says. "But if we actually go into tissue, we see something different. What we see there is eye-opening." After three years of intensive drug therapy that suppresses HIV replication very effectively, most patients still had only half the normal number of CD4+ effector memory T cells in their GI tracts.

"Obviously the first question is, why" What's the mechanism"" Markowitz says.

A second paper, published online in the Journal of Virology, makes some headway toward an answer. By examining the viral burden of DNA and RNA in cells from the GI tract, and comparing that to cells from the peripheral blood, Markowitz, Mehandru and their collaborators determined that the mucosal lining of the GI tract carried a disproportionately heavy viral load. That means that the initial loss of CD4 T cells in that area is partially due to virus activity. But the researchers also found evidence suggesting that there are at least two more ways in which the cells were being killed off. Some of the T cells self-destruct (a process called activation-induced cell death or apoptosis), while some appear to be killed by other cytotoxic immune cells.

"These papers speak strongly to HIV pathogenesis, to HIV therapy, and to understanding how the host and virus interact," Markowitz says. However, the short and long term consequences of the persistence of this depletion remain unknown.

In the clinic, if the loss of CD4 T cells in the GI tract translates into increased incidence of colonic polyps or colorectal cancer, routine monitoring practices will have to be re-examined, with HIV-positive patients receiving colonoscopies earlier and perhaps more frequently than current recommendations allow. In the laboratory, these findings should give researchers another angle with which to approach HIV vaccines.

"What good is a vaccine going to be if you get immune responses in peripheral blood but there's nothing in tissue"" Markowitz says. "It's pretty clear that a successful vaccine will need to address issues surrounding mucosal immunity, which is an area that -- relatively speaking -- has been previously ignored."

Kristine Kelly | EurekAlert!
Further information:
http://www.rockefeller.edu

Further reports about: CD4 HIV HIV-1 Markowitz T cells tract

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>