Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Super' enzyme may lead way to better tumor vaccines

05.12.2006
A "super" form of the enzyme Akt1 could provide the key to boosting the effect of tumor vaccines by extending the lives of dendritic cells, the immune-system master switches that promote the response of T-cells, which attack tumors, said researchers at Baylor College of Medicine in a report that appears in the "advance online publication" section of the current issue of the journal Nature Biotechnology.

"By keeping the dendritic cells alive longer, you extend the window of activation, promoting the desirable immune response, which in the case of cancer, is the expansion of T-cells," said Dr. David Spencer, associate professor of immunology at BCM. "The longer your dendritic cells are alive and active, the more likely you are to expand the appropriate T-helper repertoire and ultimately the desirable cytotoxic (cell killing) T-lymphocytes."

"The dendritic cells are the master switch in the immune system. They decide whether there will be a robust immune response or a tempered immune response to pathogens or cancer," he said.

Using a variety of sophisticated laboratory techniques, Spencer and his colleagues found that Akt1 "was in fact essential for dendritic cell survival," he said. Then they sought to develop a more potent form of Akt1 that would enable the dendritic cells to live longer, boosting immune response.

To do that, they altered the enzyme so that it targeted a particular domain on the plasma membrane of the cell where signaling occurred, making the action of Akt1 more specific. They then eliminated a small part of the Akt1 molecule that had a negative or inhibitory effect.

"It turned out that the altered molecule was much more potent," Spencer said. He credited graduate student Dongsu Park with doing much of the work to develop the super form of Akt1.

Using specially designed adenoviruses, he and his colleagues put the modified "super" Akt1 molecule into the dendritic cells.

"As predicted, these dendritic cells lived longer and were more potent, both in the laboratory and in mice," he said. "It led to the elimination of some very aggressive tumors in the mice."

In the laboratory, they found that the "super" Akt1 also has a potent effect on human dendritic cells as well, although it has not been used to treat people yet.

He expects that when the enzyme is used in people, the first target will be prostate cancer – a long-standing interest of his laboratory. However, he said, it could be modified to attack other tumors as well.

Laura Madden-Fuentes | EurekAlert!
Further information:
http://www.bcm.edu

Further reports about: AKT1 dendritic dendritic cells immune response

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>