Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved cell therapy for cartilage repair

30.11.2006
Artificially cultured cartilage cells, grown outside of the body for reparing damaged tissue, prove to be different from original cartilage tissue.

Cell therapy may be successful, but the added tissue performs worse than the orginal. PhD student Jeanine Hendriks of UT’s Institute for Biomedical Technology (BMTI) has developed a better method. She adds primary cells, still ‘knowing’ how to form a cartilage matrix, to the cultured cells. This seems to be a promising technique for improving cell therapy results.

Cartilage has unique properties, thanks to a matrix of cells.

The ‘proteoglycanes’ within this matrix are capable of binding water: if cartilage is under pressure, this water is squeezed out, does pressure get lower again, the water is bound again as well. This improves the flexibility of cartilage substantially, and is one of its unique features. In existing cell therapy, cells from a biopt are cultured for some three weeks. After that, the cells are injected underneath a piece of cell membrane, and the defect is repaired. The cells form cartilage tissue.

... more about:
»Hendriks »Matrix »cartilage »cultured

Cell-to-Cell interaction

In clinical practice, this works, although the cells aren’t able to form the desired matrix structures: ‘they don’t know how to do that’. Jeanine Hendriks therefore investigated the possibilities of stimulating the cells to form a matrix. By mixing cultured cells with primary chrondocytes that haven’t been cultured yet, she is able to control the process. By allowing the primary and cultured cells to interact, a matrix will be formed. This is more than creating a more ideal growth environment. It is the cell-to-cell interaction that ‘does the trick’, according to Hendriks.

Tissue engineering in vivo

Her results are the starting point for a novel clinical procedure. Hendriks wants to seed the cells on a carrier, a so-called scaffold. This is the same technique that is used in tissue engineering, the main difference is that Hendriks wants to implant the scaffold immediately after seeding and let them grow in vivo, while in tissue engineering, cells usually are cultured in vitro.

The new technique is truly promising: after finishing her PhD work, Jeanine Hendriks wants to further develop the clinical procedures, within her own company CellCoTec.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl/en

Further reports about: Hendriks Matrix cartilage cultured

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>