Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Method for Detecting Antibiotic Resistance: Mutations Emit Light Signals

29.11.2006
The exchange of a single gene building block in the genetic material of the tuberculosis bacterium leads to resistance to the antibiotic rifampicin.

Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) and the Universities of Heidelberg and Bielefeld, Germany, have developed a highly sensitive test for detecting this genetic alteration at the level of a single molecule, thus providing information about the resistance status of an infected person.

Many resistances to antibiotics are based on specific mutations in the genetic material of the infectious agents. In the case of life-threatening infections it is vital to determine rapidly which medication will work for the patient. However, commonly used methods of resistance detection are too time-consuming, particularly with microorganisms such as tuberculosis bacteria, which grow very slowly in the culture dish.

Scientists headed by Dr. Jens-Peter Knemeyer of the Division of Functional Genome Analysis at the DKFZ have combined a hybridization method, where small DNA probes bind highly specifically and exclusively to the mutated gene sequence, with confocal microscopy technology. The DNA probes are coupled to a fluorescent dye that flashes under laser light. However, this light signal is emitted only if the probe attaches to the target sequence in the bacterial genetic material. ‘Unbound’ probe molecules do not emit a signal. Each of these tiny light flashes that occur when the probe and the target molecule bind to each other, detects a single mutated DNA molecule.

... more about:
»DNA »Genetic »resistance

By measuring the duration and decay times of the light flashes, the researchers distinguish between real measurement results and the ubiquitous background fluorescence: Due to chemical properties of the molecules involved, spontaneous fluorescence decays much more quickly than the signal emitted by the dye-labeled probe.

Detection of resistance causing point mutations in the genetic material of the tuberculosis bacterium is just one of numerous possible applications of the new method called single-molecule fluorescence spectroscopy. The method has a big advantage: Instead of recording light flashes in a sample solution, as is done in antibiotic resistance detection, the investigation method can also be used in living cells. Dr. Jörg Hoheisel, head of the Division of Functional Genome Analysis at the DKFZ, explains: “Just as we can detect DNA mutations, we can also use suitable probes to detect all molecules in a cell that are characteristic of a specific disease. Since the test identifies single molecules, it is highly sensitive – but reliable at the same time, because we have an internal control using the decay times.”

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

Further reports about: DNA Genetic resistance

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>