Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New data from NIH lab confirms protocol to reverse type 1 diabetes in mice

28.11.2006
Data also support role for adult spleen cells in regeneration of beta cells

New data published in the Nov. 24 issue of Science provide further support for a protocol to reverse type 1 diabetes in mice and new evidence that adult precursor cells from the spleen can contribute to the regeneration of beta cells.

In 2001 and 2003, researchers at Massachusetts General Hospital (MGH) demonstrated the efficacy of a protocol to reverse of type 1 diabetes in diabetic mice. Three studies from other institutions published in the March 24, 2006 issue of Science confirmed that the MGH-developed protocol can reverse the underlying disease but were inconclusive on the role of spleen cells in the recovery of insulin-producing pancreatic islets.

The new data from a study performed at the National Institutes of Health (NIH), published as a technical comment, provides additional confirmation of the ability to reverse type 1 diabetes and on the role of the spleen cells in islet regeneration.

... more about:
»Diabetes »NIH »Regeneration »spleen »type 1 diabetes

"This data from the NIH and the earlier studies have added significantly to the understanding of how diabetes may be reversed," says Denise Faustman, MD, PhD, director of the Immunobiology Laboratory at Massachusetts General Hospital, primary author of the 2001 and 2003 studies and co-corresponding author of the current report. "It is still early, but it appears that there are multiple potential sources for regenerating islets. As a research community we should pursue all avenues. We're excited to see what will happen in humans."

In the 2001 and 2003 studies, Faustman and colleagues treated end-stage nonobese diabetic (NOD) mice with Freund's complete adjuvant, a substance that suppresses the activity of the immune cells that destroy islets in type 1 diabetes. They also introduced donor spleen cells to retrain the immune system not to attack islets and found that the protocol not only halted the immune destruction caused by diabetes but also allowed the insulin-producing pancreatic islet cells to regenerate. Evidence indicated that the spleen cells were the source of at least some of the regenerated islet cell and hastened the restoration of blood sugar levels.

The direct contribution of spleen cells to islet recovery, first described in the 2003 study, is confirmed in the current work. NIH researchers used cell lineage tracking in the form of Y-chromosomal fluorescence in situ hybridization (FISH), in combination with insulin staining, to follow the fate of male spleen cells transplanted into female recipients. The female mice that received male donor cells consistently showed Y-chromosome-positive insulin-producing islet cells, indicating that the introduced spleen cells contribute to islet recovery. The current study also showed that the degree of spleen cell contribution is influenced by mouse age at the start of treatment. Spleen cells appear to contribute to islet recovery more in mice who are older and with more advanced diabetes compared with younger mice with less advanced diabetes, in which regeneration of remaining islets may be the dominant mechanism.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

Further reports about: Diabetes NIH Regeneration spleen type 1 diabetes

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>