Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wheat gene may boost foods' nutrient content

27.11.2006
Researchers at the University of California, Davis; the U.S. Department of Agriculture; and the University of Haifa in Israel have cloned a gene from wild wheat that increases the protein, zinc and iron content in the grain, potentially offering a solution to nutritional deficiencies affecting hundreds of millions of children around the world.

Results from the study will be reported in the Nov. 24 issue of the journal Science.

"Wheat is one of the world's major crops, providing approximately one-fifth of all calories consumed by humans, therefore, even small increases in wheat's nutritional value may help decrease deficiencies in protein and key micronutrients," said Professor Jorge Dubcovsky, a wheat breeder and leader of this research group. He noted that the World Health Organization estimates that more than 2 billion people are deficient in zinc and iron, and more than 160 million children under the age of five lack an adequate protein supply.

The cloned gene, designated GPC-B1 for its effect on Grain Protein Content, accelerates grain maturity and increases grain protein and micronutrient content by 10 to 15 percent in the wheat varieties studied so far. To prove that all these effects were produced by this gene, the researchers created genetically modified wheat lines with reduced levels of the GPC gene by a technique called RNA interference. These lines were developed by research geneticist Ann Blechl of USDA's Agricultural Research Service in Albany, Calif.

... more about:
»CONTENT »GPC-B1 »nutritional »varieties »wheat

"The results were spectacular," Dubcovsky said. "The grains from the genetically modified plants matured several weeks later than the control plants and showed 30 percent less grain protein, zinc and iron, without differences in grain size. This experiment confirmed that this single gene was responsible for all these changes."

Dubcovsky said the research team was surprised to find that all cultivated pasta and bread wheat varieties analyzed so far have a nonfunctional copy of GPC-B1, suggesting that this gene was lost during the domestication of wheat.

Therefore, the reintroduction of the functional gene from the wild species into commercial wheat varieties has the potential to increase the nutritional value of a large proportion of our current cultivated wheat varieties," he said. "Furthermore, this discovery provides a clear example of the value and importance of conserving the wild germplasm -- the source of genetic diversity -- of our crop species."

Dubcovsky leads a consortium of 20 public wheat-breeding programs known as the Wheat Coordinated Agricultural Project, which is rapidly introducing GPC-B1 and other valuable genes into U.S. wheat varieties using a rapid-breeding technique called Marker Assisted Selection. The resulting varieties are not genetically modified organisms, which will likely speed their commercial adoption. More information about the Wheat Coordinated Agricultural Project is available online at http://maswheat.ucdavis.edu/.

Several breeding programs have already used the GPC-B1 gene to develop elite breeding lines, which are close to being released as new wheat varieties. Breeders are currently testing the new lines in multiple environments to determine if the introduction of GPC-B1 has any negative impacts on yield or quality. The researchers hope that these efforts will soon translate into food products with enhanced nutritional value.

Pat Bailey | EurekAlert!
Further information:
http://maswheat.ucdavis.edu
http://www.ucdavis.edu

Further reports about: CONTENT GPC-B1 nutritional varieties wheat

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>