Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patterns on tropical marine mollusk shell mirror gene expression patterns

23.11.2006
Scientists have identified a group of genes that control the formation of shapes and colour patterns on the shell of the tropical marine mollusc referred to as 'abalone'.

A study published today in the open access journal BMC Biology reveals that the shape and colour patterns on the shell of the mollusc mirror the localised expression of specific genes in the mantle, a layer of skin situated just below the shell. The authors of the study identify one gene in particular that controls the formation of blue dots on the shell of the mollusc.

Daniel Jackson, Bernard Degnan and colleagues from the University of Queensland, Australia, collaborated with colleagues from the Department of Geobiology at the University of Göttingen, Germany to analyse gene expression in the tropical abalone Haliotis asinina. They sequenced 530 randomly-selected genes expressed in the mantle tissue of the young abalone.

Jackson et al. identified 331 genes that encode proteins expressed in the mantle. Using a bioinformatics approach they find that 26% (85) of these genes encode secreted proteins. Jackson et al. then analysed the expression patterns of 22 of the genes encoding secreted proteins. They find that each gene is expressed in a specific, discrete area of the mantle, involved in the formation of a specific layer, shape or colouration pattern of the shell. They identify one gene in particular, Has-sometsuke, whose expression pattern maps precisely to pigmentation patterns in the shell. Blue dots on the shell of the abalone correspond to zones of high Has-sometsuke expression. By comparing the abalone DNA sequences with the genome of another related mollusc, Lottia scutum, the authors also show that genes encoding the secreted mantle proteins, which they call the 'secretome', in abalone, are likely to be rapidly evolving genes.

... more about:
»Expression »abalone »mantle »mollusc

Jackson et al. conclude: "The unexpected complexity and evolvability of this secretome and the modular design of the molluscan mantle enables the diversification of shell strength and design, and as such must contribute to the variety of adaptive architectures and colours found in mollusc shells."

Juliette Savin | EurekAlert!
Further information:
http://www.biomedcentral.com/bmcbiol/

Further reports about: Expression abalone mantle mollusc

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>