Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teeth: a future renewable natural resource?

22.11.2006
Most vertebrates have continuous tooth generation, meaning that lost teeth are replaced with new teeth. Mammals, however, including humans, have teeth that are generally only replaced once, when milk teeth are replaced with permanent teeth.

Researchers from the Institute of Biotechnology at the University of Helsinki and their collaborators from Berlin and Kyoto have now shown that continuous tooth generation can be induced in mammals. The research results were published in the scientific journal Proceedings of the National Academy of Sciences, USA (PNAS).

The researchers activated the Wnt signalling pathway in mouse tissue; this signalling pathway is one of those used for cell communication and plays an important role in embryonic development. As a result of stimulating this particular signalling, one mouse molar developed dozens of new teeth with normal dentin, tooth enamel and developing roots. The crowns were, however, simple and cone-shaped, unlike the typically more complex multiple cusps of mouse molars.

The development of the new teeth was studied through tissue culture, and it became clear they were the result of germination from previously developed teeth, just like the teeth of lower vertebrates. The evolutionary trend in mammalian dentition has generally been toward a decrease in tooth generation, as well as towards a more complex shape of the crowns of teeth. The research indicates that Wnt signalling could have played a crucial role in these changes during evolution.

... more about:
»continuous »signalling »teeth

The results also suggest that mice have retained incipient potential for continuous tooth generation and that it can be unlocked by activating Wnt signalling. It is reasonable to conjecture that the potential for continuous tooth generation may also have been retained in humans. Who knows: perhaps dentists in the distant future may be able to use this million-year-old regenerative potential to make their patients grow new teeth to replace lost ones.

Satu Himanen | alfa
Further information:
http://www.helsinki.fi

Further reports about: continuous signalling teeth

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>