Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Social cues and illusion: There's more to magic than meets the eye

21.11.2006
The mechanisms that govern visual perception are only partly understood by scientists, and in fact much of what we know about how the human visual system works stems from investigations into our susceptibility to visual illusions.

While scientists have used knowledge of illusions to further our understanding of the mind, magicians have learned to master the art of deception for entertainment purposes. In new findings, researchers have taken advantage of the power of magicians to facilitate illusion, and have uncovered how particular types of information--in particular, cues from magicians--influence some aspects of the visual brain, whereas other components of the visual system are not similarly fooled by the social cues and expectations that mediate perception.

The findings are reported by Gustav Kuhn, of the University of Durham (UK), and Michael Land, of the University of Sussex (UK), and appear in the November 21st issue of the journal Current Biology, published by Cell Press.

Our perception of an event is often significantly modulated by our past experience and expectations. In the new work, the researchers used a magic trick (the "vanishing ball" illusion) to demonstrate how magicians can distort our perception in an everyday situation by manipulating our expectations; the researchers went on to investigate the mechanisms behind this deception.

... more about:
»Illusion »MAGIC »Perception »expectations »magician

The researchers found that when a magician performed the illusion, in which a ball was seen to disappear in the air after a fake throw, 68% of observers perceived the ball leaving the magician's hand, move upward, and disappear--this despite the fact that the ball did not leave the magician's hand. Experimental manipulations of the trick revealed that the observers' perception of the ball was determined by particular cues--namely the magician's head direction--that were indicative of the ball's intended location, rather than the location of the ball itself.

By measuring the actual eye movements of the observers, the researchers showed that rather than merely tracking the ball, most people looked at the magician's face prior to tracking the ball--consistent with the visual system utilizing so-called social cues, such as the magician's head direction and gaze, to help form a perception of the ball's location. However, once the ball was no longer physically present in the course of the illusion, observers did not look at the area where they claimed to have seen the ball, suggesting that the oculomotor system, which governs motor control of the eyes, was not fooled by the illusion.

The study's findings show that although people's visual perception was strongly influenced by expectations, the oculomotor system itself was largely driven by "bottom up," visual information from the ball itself. The findings are also consistent with recent evidence from other studies suggesting that two separate neural pathways exist for perception and visuomotor control.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

Further reports about: Illusion MAGIC Perception expectations magician

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>