Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edible food wrap kills deadly E. coli bacteria

20.11.2006
Researchers have improved upon an edible coating for fresh fruits and vegetables by enabling it to kill deadly E. coli bacteria while also providing a flavor-boost to food.

Composed of apple puree and oregano oil, which acts as a natural antibacterial agent, the coating shows promise in laboratory studies of becoming a long-lasting, potent alternative to conventional produce washes, according to a team of scientists from the U.S. Department of Agriculture (USDA) and the University of Lleida in Spain.

The study comes on the heels of the recent deadly E. coli outbreak in spinach and amid growing concern by experts that some produce-cleaning techniques may not be effective in destroying E. coli. The study is scheduled for the Nov. 29 issue of the American Chemical Society's Journal of Agricultural and Food Chemistry.

"All produce-cleaning methods help to some degree, but our new coatings and films may provide a more concentrated, longer-lasting method for killing bacteria," says Research Leader Tara H. McHugh, Ph.D., a food chemist with the USDA's Agricultural Research Service in Albany, Calif. As the films are made of fruit or vegetable puree, they also provide added health benefits such as vitamins, minerals and antioxidants, she says.

... more about:
»Coating »Coli »E. coli »McHugh »antimicrobial »oregano »puree

Researchers have known about the antimicrobial activity of plant-derived essential oils for some time, but McHugh says that her group is the first to incorporate them into a fruit- or vegetable-based edible food wrap for the purpose of improving food safety. Three years ago, she and her associates developed a similar edible food wrap, but without the antimicrobial properties.

The new antimicrobial coatings have not been tested on fresh produce yet, McHugh notes. The current study only tested the coatings against E. coli O157:H7, a potentially deadly strain of the common bacterium Escherichia coli, but tests on other foodborne pathogens, including Salmonella, are ongoing or planned in the future, she says. If they continue to show promise, the coatings could hit the consumer market in a year or two, estimates McHugh, whose study is funded by the USDA.

In developing the coatings, McHugh and her associates tested oregano, cinnamon and lemongrass oils in solutions of apple puree and dried films for their effectiveness against E. coli. Each compound was tested in a controlled series of dilutions, the scientists say.

While all of the oils tested inhibited the growth of E. coli, oregano oil was the most effective, killing over 50 percent of sample bacteria in 3 minutes at concentrations as small as 0.034 percent, says McHugh, who's now working on improving the kill rate.

The second most effective oil was lemongrass, followed by cinnamon oil. By contrast, the apple-puree film alone did not kill the E. coli bacteria, the scientist says.

However, an advantage of the apple antibacterial film is that it is composed of sticky sugars and lipids, which allow the coating to adhere to fruits and vegetables for longer periods than conventional, water-based produce washes. That same stickiness also gives the suspended antimicrobial agents a more concentrated exposure to bacterial surfaces, increasing the film's germ-killing potential, the researchers say.

The antibacterial coating could be used by produce manufacturers as a spray or dip for fresh fruits and vegetables, they say. The resulting product will taste a bit like oregano, McHugh says, adding that this can be a desirable trait in salads.

Besides apple puree, the antimicrobial films can also be made from broccoli, tomato, carrot, mango, peach, pear and a variety of other produce items. Non-antimicrobial versions of these food wraps are now being made commercially by California-based Origami Foods® in cooperation with the USDA for use in a small but growing number of food applications, including sushi wraps.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

Further reports about: Coating Coli E. coli McHugh antimicrobial oregano puree

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>