Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pressured by predators, lizards see rapid shift in natural selection

20.11.2006
Countering the widespread view of evolution as a process played out over the course of eons, evolutionary biologists have shown that natural selection can turn on a dime -- within months -- as a population's needs change.

In a study of island lizards exposed to a new predator, the scientists found that natural selection dramatically changed direction over a very short time, within a single generation, favoring first longer and then shorter hind legs.

The findings, by Jonathan B. Losos of Harvard University and colleagues, are detailed this week in the journal Science. Losos did much of the work before joining Harvard earlier this year from Washington University in St. Louis.

"Because of its epochal scope, evolutionary biology is often caricatured as incompatible with controlled experimentation," says Losos, professor of organismic and evolutionary biology in Harvard's Faculty of Arts and Sciences and curator in herpetology at the Harvard Museum of Comparative Zoology. "Recent work has shown, however, that evolutionary biology can be studied on short time scales and that predictions about it can be tested experimentally. We predicted, and then demonstrated, a reversal in the direction of natural selection acting on limb length in a population of lizards."

... more about:
»Anolis »Biology »Evolutionary »Predator »lizard

Losos and colleagues studied populations of the lizard Anolis sagrei on minuscule islands, or cays, in the Bahamas. They introduced to six of these cays a larger, predatory lizard (Leiocephalus carinatus) commonly found on nearby islands and known as a natural colonizer of small cays. The scientists kept six other control cays predator-free and exhaustively counted, marked, and measured lizards on all 12 isles.

Anolis sagrei spends much of its time on the ground, but previous research has shown that when a terrestrial predator is introduced, these lizards take to trees and shrubs, becoming increasingly arboreal over time. Losos and his colleagues hypothesized that immediately following a predator's arrival, longer-legged -- and hence faster-running -- Anolis lizards would be favored to elude capture. However, as the lizards grew ever more arboreal in habitat, the scientists projected that natural selection would begin to favor shorter limbs, which are better suited to navigating narrow branches and twigs.

Their hypothesis was borne out. Six months after the introduction of the predator, Losos found that the Anolis population had dropped by half or more on the islands with the predators, and in comparison to the lizards on the predator-free islands, long legs were more strongly favored: Survivors had longer legs relative to non-survivors. After another six months, during which time the Anolis lizards grew increasingly arboreal, selective pressures were exactly the opposite: Survivors were now characterized by having shorter legs on the experimental islands as compared to the control islands.

The behavioral shift from the ground to higher perches apparently caused this remarkable reversal, Losos says, adding that behavioral flexibility may often drive extremely rapid shifts in evolution.

"Evolutionary biology is by its nature an historical science, but the combination of microevolutionary experimentation and macroevolutionary historical analysis can provide a rich understanding about the genesis of biological diversity," the researchers write.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

Further reports about: Anolis Biology Evolutionary Predator lizard

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>