Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find mutations that let bird flu adapt to humans

16.11.2006
By comparing influenza viruses found in birds with those of the avian virus that have also infected human hosts, researchers have identified key genetic changes required for pandemic strains of bird flu.

The new work, reported in the Nov. 16 issue of the journal Nature, illustrates the genetic changes required for the H5N1 avian influenza virus to adapt to easily recognize the receptors that are the gateway to human cells.

"We identified two changes that are important," says Yoshihiro Kawaoka, the senior author of the Nature paper and a virologist at the University of Wisconsin-Madison School of Veterinary Medicine. "Both changes are needed for the H5N1 virus to recognize human receptors."

The new report provides a molecular blueprint for the genetic changes required to transform a virus that only infects birds to a virus capable of easily recognizing human receptors. Receptors are molecules on the surface of cells that permit the virus to dock with the cell and commandeer it to initiate a cascade of infection. By knowing what genetic changes are required for the virus to easily infect human cells, it may be possible to detect the emergence of pandemic strains earlier, providing public health officials and vaccine manufacturers with precious time to prepare for a global outbreak of highly pathogenic influenza. To be successful, a virus must be able to recognize and attach to a host cell. But human and avian influenza viruses recognize different cell receptors. Avian flu viruses have demonstrated an ability to evolve to easily infect humans by exchanging genes with human viruses that subsequently permit them to recognize human receptor molecules and gain easy access to cells, typically in the human respiratory system.

... more about:
»Kawaoka »Mutation »avian »flu »pandemic »receptor

The change is thought to occur when human patients are exposed at the same time to a human flu virus and an avian flu virus. Most viruses, including influenza, readily swap genes with one another.

In the new study, conducted by an international team of researchers, the viruses isolated from human patients in Vietnam and Thailand could recognize both human and avian cell receptors. By contrast, the viruses found in chickens and ducks could only recognize the receptors on avian cells.

The work helps flesh out the changes that have occurred in the worrisome strain of avian influenza virus known as H5N1, a strain some fear could be the organism that will trigger a pandemic of virulent human influenza. The avian virus has already changed dramatically from when it was first identified in 1997, says Kawaoka, who also holds an appointment at the University of Tokyo.

"There are big differences between the virus first found in 1997 and the virus we see now," Kawaoka explains. "We are watching this virus turn itself into a human pathogen."

The mutations found by Kawaoka's group have not yet conferred a complete ability on avian flu to easily recognize the topography of human cells, but they are key steps on that pathway. More mutations, says Kawaoka, will be required for the virus to fully adapt to humans, but it is not known how many mutations are needed for such a change.

However, if scientists are able to continue to monitor and secure viral isolates from humans infected with bird flu, they may be able to map a mutation trajectory that will help predict when the avian virus will cross the threshold to become a human pathogen.

The last two flu pandemics in 1957 and 1968 were caused by avian viruses that had accumulated enough genetic mutations to be considered hybrids of animal and human viruses, Kawaoka notes.

Yoshihiro Kawaoka | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: Kawaoka Mutation avian flu pandemic receptor

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>