Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist takes Mentos and Coke Craze Into Schools

16.11.2006
A scientist at The University of Manchester is taking her own version of the latest Internet sensation into schools, in a bid to stir up interest in chemistry.

The Coke and Mentos fountain experiment has grabbed worldwide attention, with thousands of people tuning into Eepybird.com (www.eepybird.com) to watch the explosive results of mixing the sweets with the fizzy drink.

Such is the interest in the video – which shows hundreds of large bottles of Diet Coke erupting in sequence – many Internet users have done the experiment themselves, created their own videos and posted them on video sharing site YouTube (www.youtube.com).

Dr Sarah Heath, who is Outreach Director for the School of Chemistry at The University of Manchester, goes into school in the Greater Manchester area to give exciting science demonstrations on solids, liquids and gases.

... more about:
»Coke »Mento »fizzy

And after seeing how the video has captured the imagination of children, she is planning to capitalise on this interest and introduce the spectacular foaming fizzy fountain into her repertoire.

She said: “I mentioned to my daughter that I was looking at doing the Mentos and Diet Coke experiment, and she said all her friends at her school had been talking about it.

“I think it’s a great thing because it’s got children interested in science. We can talk about the chemistry that lies behind it later, but the important thing is to capture their attention in the first place.

Dr Heath already demonstrates how to make flat water fizzy by dissolving carbon dioxide into it. She feels the Coke and Mentos fountain fits nicely into her existing presentation, as it shows the gas coming out again.

The visuals are not dissimilar from an experiment she already performs for pupils, where oxygen is released from hydrogen peroxide to produce a spectacular mass of foaming bubbles.

Scientists and chemists have so far put forward various theories on why Diet Coke reacts so violently when Mentos are added, but Dr Heath feels the rough surface of the sweets plays a big part.

“If you drop anything into a fizzy drink you will get bubbles. For example, with ice you get bubbles but they don’t go mad and shoot out of the glass. If you poor a fizzy drink into a dirty glass, bubbles form around what we call nucleation sites. If the glass is cleaner and smoother, it doesn’t fizz as much.

“When you look at a Mento under a microscope you will see that it’s quite pitted and therefore has lots of nucleation sites, which causes the carbon dioxide to be released. There is probably also a chemical reaction occurring but there is a lot of debate about this.”

On the subject of what would happen to someone who drunk Diet Coke and then ate Mentos, Dr Heath says: “When you open a bottle of Coke and drink it, most of the gas escapes so the reaction would not be as violent. But you might find that you burped more than usual.

“I must stress that people should not try this under any circumstances, but if you drunk a lot of Diet Coke and swallowed a whole packet of Mentos without chewing, that could certainly produce an interesting reaction.”

At present Sarah has only been able to find fruit Mentos to recreate the experiment – but has discovered they work just as well.

Teachers interested in Dr Heath’s science demonstrations should email Sarah.L.Heath@manchester.ac.uk.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps
http://www.youtube.com

Further reports about: Coke Mento fizzy

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>