New test may identify cardiovascular disease earlier

The markers also may prove useful as “early warning systems” for coronary artery disease, alerting physicians to patients who need preventive treatment to keep their disease from progressing to danger levels, according to the researchers.

The analysis is one of the first to use metabolomics — that is, the systematic study of the unique chemical fingerprints that specific cellular processes leave behind — to better understand the underlying biological pathways involved in families with coronary artery disease, the researchers said. They likened metabolomics to analyzing the contents of a trash can in order to learn about the people who filled the can.

The team measured minute amounts of metabolites, or byproducts of cellular metabolism, in the blood of people whose extended family members had a history of developing coronary artery disease at an early age. Using the measurements, the researchers generated “metabolite profiles” of each individual.

Based on these profiles, the researchers demonstrated that many of the metabolites have stronger heritabilities, a measure of genetic predisposition, than do conventional markers such as cholesterol. This finding suggests that it may be possible to identify people at an early age who would be most likely to develop coronary artery disease, the researchers said.

“The results of our studies may have significant clinical implications above and beyond the ability of identifying the genes that underlie the susceptibility to coronary artery disease,” said cardiologist and study team leader Svati Shah, M.D., who reported the findings on Tuesday, Nov. 14, at the annual scientific sessions of the American Heart Association, in Chicago.

“The data from our study suggest that there is a strong genetic component to an individual's metabolomic profile,” Shah said. “Furthermore, they suggest that changes in the metabolic profiles in the offspring of patients with coronary artery disease precede development of the disease. With this advance notice, we could then start strategies, such as drugs or lifestyle changes, to stop or slow down the disease process.”

The study was supported by the National Institutes of Health and the American Heart Association.

The researchers studied 82 patients from five extended families with at least two siblings afflicted with coronary artery disease at an early age — that is, at age 51 or younger for men and 56 or younger for women. The team chose to focus on families with histories of early cardiovascular because it is most likely that patients who have coronary artery disease at a young age have inherited it, rather than developed it over years.

The researchers took blood samples from all family members and performed detailed screening for more than 60 metabolites. According to Shah, the metabolites they were searching for are physically tiny and occur in small numbers. She said a colleague, Christopher Newgard, Ph.D., developed the technology necessary to make these exacting and detailed measurements.

The team found that certain metabolites were significantly different in the five families, and paralleled differences in the clinical characteristics of the families. The presence of the suspect metabolites may serve as an indicator that the body is not properly using certain fuel sources, and may represent a marker for cardiovascular risk, Shah said.

“We found clear evidence for a strong genetic component to metabolites in families heavily burdened with cardiovascular risk factors,” Shah said. “Some of the metabolites we identified can aggravate the body's inflammatory response as well as insulin signaling in diseased arteries.” Both such actions, she said, may play a role in cardiovascular disease.

Shah's group plans further studies to identify the genes responsible for the metabolomic profiles uncovered in the current study. She also plans to study the metabolite screening process in a much larger group of patients without family histories of cardiovascular disease to see if there are any similarities to the early-onset cardiovascular disease.

Media Contact

Richard Merritt EurekAlert!

More Information:

http://www.mc.duke.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors