Scientists design simple dipstick test for cocaine, other drugs

“Building upon our earlier work with lead (Pb) sensors, we constructed colorimetric sensors that are based on the lateral flow separation of aptamer-linked nanostructures,” said Yi Lu, a chemistry professor at the U. of I., and a researcher at the Beckman Institute for Advanced Science and Technology.

“The new sensors offer a quick and convenient test that can be utilized by first responders or emergency room staff to quickly screen individuals for a variety of drugs and other chemicals.” Lu said.

Aptamers are single-stranded nucleic acids that can bind to specific molecules in three-dimensions. For each molecular target, such as cocaine, a corresponding aptamer can be selected from a large DNA library.

By using lateral flow devices as platforms to separate aptamer-linked nanoparticle aggregates, Lu, postdoctoral researcher Juewen Liu and graduate student Debapriya Mazumdar created highly sensitive and selective colorimetric sensors that mimic litmus paper tests. The researchers describe their work in a paper accepted for publication in the journal Angewandte Chemie International Edition, and posted on its Web site.

“Our lateral flow devices take advantage of the difference in size between dispersed and aggregated gold nanostructures,” Lu said. “This provides critical control for the performance of the devices.”

The lateral flow device consists of four overlapping pads – wicking, conjugation, membrane and absorption. The appropriate aptamer-linked nanoparticle aggregates are placed on the conjugation pad, streptavidin is applied as a thin line to the membrane pad, and the device is then dried.

When dipped into a solution, or swabbed with a sample, the wicking pad carries the fluid to the nanoparticle aggregates on the conjugation pad. The rehydrated aggregates then migrate to the edge of the membrane, which they cannot penetrate because of their large size.

The aptamers quickly bind to any targeted molecules that are present, freeing some of the gold nanoparticles. The red-colored nanoparticles then migrate along the membrane, where they are captured by the streptavidin and form a red line. The intensity of the line is an indicator of how much of the targeted molecule was in the sample solution.

So far, the researchers have successfully demonstrated their dipstick technology on both adenosine (a nucleotide consisting of adenine and ribose) and cocaine, in human blood serum.

“Our results show that the aptamer-based dipstick is compatible with biological samples, making applications in medicinal diagnostics possible,” Lu said.

Media Contact

James E. Kloeppel EurekAlert!

More Information:

http://www.uiuc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors