Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ten thousand years of testing in one year

14.11.2006
Which chemicals are best suited to be used as drugs? The use of a computer simulation to find out saves time, money – and animal lives.

Developing new medicines is usually a long and costly process. Now, methods are being developed at Norwegian University of Science and Technology – that allow some of the testing required in drug development that normally take years to complete to be done in just a fraction of the time. With the help of mathematical calculations and computer simulations, researchers can quickly find out if a substance has the qualities and characteristics of an effective drug before it is tested in the real world.

ACCURATE

Chemical researcher Kristin Tøndel believes that the new method she is developing has promise. “Right now we are looking into new treatments for cancer. We started with more than 250,000 chemical compounds. From this foundation we identified about 1,200 compounds that we wanted to test further. After one year we are left with eight compounds that we hope can form the basis for a new medicine. It is clear that without computer simulation, it would have been impossible for us to start with such a wide range of compounds. If we were to test these substances experimentally in a laboratory, we might have managed perhaps 20-40 substances in a year. In other words, it would have taken us 10,000 years to test these 250,000 chemical compounds using traditional methods.

“The use of traditional tests would have meant excluding compounds that from the beginning did not look promising, but that still might have turned out to have great potential. Using our method we can test a far greater number of chemicals. Use of our method also eventually means that a much smaller number of chemicals need to be actually tested, and the likelihood that the chemicals being tested will be effective also increases dramatically.”

TRICKS BAD PROTEINS

The computer programme, which has been developed from a widely available software programme, simulates the effects that chemical compounds have on the body.

“My research is focussed on the development of new cures for cancer, specifically, finding chemical compounds that attach themselves to proteins involved in the growth and spread of cancer cells.We are trying to find chemical compounds that ‘trick’ the protein into believing that it is attached to the body’s own material. If we find such a compound, we can prevent the protein from aiding in the growth of the cancerous cells, and we are well on our way to developing a new medicine”, Tøndel explains. Hercomputer programme can simulate how different compounds interact with proteins, in order to identify promising candidates for new drugs.

FROM CHEMISTRY TO MEDICINE

The method was initially used in chemistry for calculating smaller molecular structures. Researchers discovered that it could also be used in calculations for larger molecules, like protein structures. A protein is made up of chains of what are called amino acids. Today, the structures of many proteins have already been determined experimentally, and can be found in large databases available on the Internet.

“Other researchers use similar methods, but we have developed it further, so that we can even test protein structures that have not yet been determined experimentally. We simply model the protein using the structure of a related protein as a starting point. Our method is especially adapted to such protein models. Hence, we can also simulate the effects that different chemicals have on the protein, and if they are appropriate for laboratory testing”, Tøndel explains. The method can also be used in other medical research fields, such as HIV/AIDS research.

ETHICAL BENEFITS

The main disadvantage of the new method is that not all chemicals are physically tested, so there is no definitive answer as to whether or not they would actually work.

“We run the risk of discarding compounds through simulation that in practice could have proven to be effective, but I think the benefits of our method far outweigh the disadvantages. We can develop new medicines faster, less expensively, and more effectively. Another important benefit is that the method reduces the need for animal testing, and ultimately human testing, because only compounds we really have faith in will be the subject of practical tests. This is important, particularly from an ethical standpoint”, Tøndel says.

Nina Tveter | alfa
Further information:
http://www.ntnu.no

Further reports about: Researcher Substance Testing Tøndel compound protein structure structure

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>