Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy inhibits epilepsy in animals

10.11.2006
Altering signaling pathways may be potential approach to therapy

For the first time, researchers have inhibited the development of epilepsy after a brain insult in animals. By using gene therapy to modify signaling pathways in the brain, neurology researchers found that they could significantly reduce the development of epileptic seizures in rats.

"We have shown that there is a window to intervene after a brain insult to reduce the risk that epilepsy will develop," said one of the lead researchers, Amy R. Brooks-Kayal, M.D., a pediatric neurologist at The Children's Hospital of Philadelphia and associate professor of Neurology and Pediatrics at the University of Pennsylvania School of Medicine. "This provides a 'proof of concept' that altering specific signaling pathways in nerve cells after a brain insult or injury could provide a scientific basis for treating patients to prevent epilepsy."

Dr. Brooks-Kayal and Shelley J. Russek, Ph.D., of Boston University School of Medicine were senior authors of the study in the Nov. 1 Journal of Neuroscience.

... more about:
»Brooks-Kayal »Epilepsy »alpha1 »seizure »subunit

Working in a portion of the brain called the dentate gyrus, the researchers focused on one type of cell receptor, type A receptors, for the neurotransmitter gamma-aminobutyric acid (GABA). When GABA(A) receptors are activated, they inhibit the repetitive, excessive firing of brain cells that characterizes a seizure. Seizures are thought to occur, at least in part, because of an imbalance between two types of neurotransmitters: the glutamate system, which stimulates neurons to fire, and the GABA system, which inhibits that brain activity.

GABA's inhibitory role is considered particularly important in the dentate gyrus because the dentate gyrus acts as a gateway for brain activity into the hippocampus, an area that is critical to generating seizures in temporal lobe epilepsy, the most common type of epilepsy in children and adults.

GABA(A) receptors are made up of five subunits--proteins that play important roles in brain development and in controlling brain activity. Previous animal research by Dr. Brooks-Kayal's group had found that rats with epilepsy had lower levels of the alpha1 subunits of these receptors and higher levels of alpha4 subunits. Therefore, the researchers used gene delivery to alter the expression of the alpha1 subunit to see if this would have an effect on later seizure development.

To carry the gene that alters the expression of the protein, they used an adeno-associated virus vector, injected into the rats' brains. The researchers later injected the rats with pilocarpine, a drug that causes status epilepticus (SE), a convulsive seizure, shortly after injection.

They then evaluated the rats for later development of spontaneous seizures or epilepsy, which usually occurs after an initial SE injury. Rats that had received the gene therapy had elevated levels of alpha1 proteins and either did not develop spontaneous seizures, or took three times as long to experience a spontaneous seizure, compared to rats that did not receive the delivered gene.

In this short-term study, said Dr. Brooks-Kayal, it was impossible to tell whether the increased alpha1 subunit levels were only suppressing seizures or whether they would permanently prevent epilepsy from developing.

"In people, an initial episode of SE or an injury such as severe head trauma is known to raise the risk of later developing epilepsy, so this study suggests that strategies aimed at modifying signaling pathways in the brain after such an insult may help prevent epilepsy," said Dr. Brooks-Kayal. "The approach would likely be different than in this proof-of-concept animal study that involved injecting agents directly into the brain. This study, does, however, lay the foundation for a potential drug therapy that might act on the same signaling pathways, to prevent epilepsy after a brain insult such as an episode of SE."

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

Further reports about: Brooks-Kayal Epilepsy alpha1 seizure subunit

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>