Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An old discovery could boost ethanol production from plant fiber

09.11.2006
John Verkade remembers just how it happened some 40 years ago: One of his Iowa State University graduate students, David Hendricker, stopped by to report somebody was stealing a little wooden applicator stick from a beaker.

Oh, Verkade said, that's just a prank. Go hide around the corner and do some peeking until the joker shows up again. Thirty minutes later Hendricker was back in Verkade's office.

"You've got to see this," Verkade remembers him saying.

What they saw was a wooden stick falling apart and sinking into the chemical compound that had been the basis for Verkade's doctoral dissertation.

... more about:
»Cellulose »Ethanol »Verkade »compound

"That's an interesting observation," Verkade said at the time.

It was so interesting he asked Iowa State to consider a patent application. But that was a long time before breaking down plant fibers to produce ethanol was linked to energy independence and national security. So the university didn't move on a patent back then. And Verkade, now a University Professor in chemistry, moved on with his work in catalysis and molecular design.

A few years ago, George Kraus, another University Professor of chemistry at Iowa State, brought up Verkade's story of the dissolving wood. He said that compound could be a way to break down the tough cellulose that forms the structure of a plant's cell walls. Breaking down the cellulose can release the simple sugars that are fermented into ethanol. Making that happen could add some value to Iowa crops or the fibrous co-products of ethanol production.

Verkade followed up with a proposal for U.S. Department of Energy funding from the Midwest Consortium for Biobased Products and Bioenergy led by Purdue University in West Lafayette, Ind. He won a two-year, $125,000 grant and enlisted the research help of Reed Oshel, an Iowa State graduate student in biorenewable resources and technology.

They started using the chemical compound on distillers dried grains, a co-product of ethanol production. The initial results weren't encouraging. Verkade was ready to stop pursuing additional funding for the project.

But, earlier this fall, the researchers treated the distillers dried grains with equal measures of the chemical compound and water. That mixture broke down 85 to 95 percent of the cellulose so it could be dissolved in water.

"That opened a whole new door for us," Verkade said. "We knew we were tearing some things up in the cellulose."

They've since tried experiments on model compounds of cellulose. Those experiments have been promising. And now they're working to see if a simpler, cheaper version of the compound can also break down cellulose.

"We have preliminary evidence that it works, too," Verkade said.

Verkade isn't identifying the compound until he can explore the potential for patents. But he's working on a grant proposal that would keep the research going. There are still questions to answer about the compound's performance and characteristics as a pre-treatment for converting cellulose to ethanol. Verkade also wants to see how the compound works on corn stalks, switchgrass and other crops grown for their fiber. And tests need to be done to determine the compound's compatibility with fermentation enzymes.

"This is an exciting time," said the 72-year-old chemist. "I'm now cautiously optimistic about this."

John Verkade | EurekAlert!
Further information:
http://www.iastate.edu

Further reports about: Cellulose Ethanol Verkade compound

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>