Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way of lubricating human joints and implants

09.11.2006
Researchers at the University of Oxford have discovered that certain lubricants reduce friction much more effectively in water or water-based solutions than in machine oil or air, which may be how the process works in biological systems as well.

‘Boundary lubrication is common in machines but is also thought to act between joints and other living organs in the form of phospholipid films,’ said Professor Jacob Klein. ‘This new mechanism could lead to better lubricated artificial implants, as well as to more effective treatments for joint problems like osteoarthritis.’

Professor Klein and his colleagues at the Physical and Theoretical Chemistry Laboratory at Oxford reported their discoveries in the 9 November issue of the journal Nature.

For more than fifty years, films or layers which are one molecule thick have been used in air or oil to lubricate surfaces which rub together, reducing friction and wear. These layers have usually belonged to the class of amphiphilic surfactants, whose head is water-loving, while their tail is water-repelling.

... more about:
»Molecule »Surface »Surfactant

‘Each of the rubbing surfaces is coated by a “boundary” layer of surfactant molecules, with charged heads that stick to the surface while their hydrocarbon tails dangle out,’ explained Professor Klein. ‘In classical boundary lubrication in air or oil, the rubbing occurs between these protective tails and greatly reduces friction and wear.’

The Oxford researchers studied the friction between mica surfaces in the different environments, with and without overlaying surfactants. They have shown that the friction stress between two sliding surface coated by surfactant monolayers can decrease much more in water than in air or oil, falling to one percent or less of its value for the latter environments.

‘We believe this happens because the charged head groups then become hydrated, that is, coated with water molecules,’ said Professor Klein. ‘This enables them to slide much more easily past the substrate than the hydrocarbon tails can slide past each other. As a result, the slip occurs at the substrate, rather than between the surfactant tails as in the classical mechanism.’

The researchers proved that the hydration of the anchors must be largely responsible for the reduction in friction by testing surfactants which were homologous to the original but could not be fully hydrated at the surface because of their structures, which resulted in greater friction. They also eliminated the possibility of this occurring due to the flipping of the surfactants’ anchors when they came into contact with water by performing the same experiments on surfaces which were brought into adhesive contact before being immersed, so that the anchors could not flip.

Barbara Hott | alfa
Further information:
http://www.ox.ac.uk

Further reports about: Molecule Surface Surfactant

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>