Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature's nanomachines harnessed to make drugs

08.11.2006
Many bacteria produce toxins that can threaten human health, however new research into how bacteria secrete these substances is giving clues as to how scientists could harness these processes to produce biopharmaceuticals.

Researchers at the John Innes Centre (JIC) in Norwich have used state-of-the-art technology to study a nanomachine in soil bacteria called the Tat system, which the bacteria use to secrete a range of proteins that help them digest food and compete with other microorganisms in the soil.

The scientists' latest work, published today in the respected journal PNAS, identifies which proteins are exported via the Tat system, revealing that this system is used by more proteins than previously thought. The biotechnology industry already uses bacteria to make proteins to use in products such as biological washing powder or pharmaceuticals, but some are difficult to produce using current methods. By harnessing the Tat system, the scientists hope that it will be easier to make these proteins for biotechnological and biomedical purposes.

The Tat nanomachine selects which proteins to secrete by recognising a short signal sequence attached to the end of the protein, explains Professor Tracy Palmer who has an MRC Fellowship with the University of East Anglia, " Our collaborators at the University of Pennsylvania have developed a computer program to search the bacterial genome to predict which proteins use the Tat system, and in this study we have verified their results experimentally and found a significant number of signals that are recognised by this system. The next step is to attach these signals to medically important proteins so they can be secreted by the bacteria using the Tat system."

... more about:
»nanomachine »secrete

The foundation work for this project was started as part of the Biotechnology and Biological Sciences Research Council' s (BBSRC) Exploiting Genomics Initiative; more recently Prof Palmer's team has joined forces with the "Tat Machine Project", an EU-funded consortium of researchers from across Europe studying the Tat system. In addition to using the Tat nanomachine to improve production of biopharmaceuticals, the consortium are studying the system in several different types of bacteria, including pathogenic species like E. coli O157 and Pseudomonas aeruginosa to explore Tat as a potential target for new antibiotics.

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: nanomachine secrete

More articles from Life Sciences:

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Nanobot pumps destroy nerve agents
21.08.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

Protein interaction helps Yersinia cause disease

21.08.2018 | Life Sciences

Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'

21.08.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>