Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key to zebrafish heart regeneration uncovered

06.11.2006
When a portion of a zebrafish's heart is removed, the dynamic interplay between a mass of stem cells that forms in the wound and the protective cell layer that covers the wound spurs the regeneration of functional new heart tissue, Duke University Medical Center scientists have found.

The scientists further discovered that key growth factors facilitate the interaction between the cell mass and the protective covering, encouraging the formation of new heart muscle.

Many cell biologists believe the ability to regenerate damaged heart tissue may be present in all vertebrate species, but that for unknown reasons, mammals have "turned off" this ability over the course of evolution. Zebrafish could provide a model to help researchers find the key to unlocking this dormant regenerative capacity in mammals, and such an advance could lead to potential treatments for human hearts damaged by disease, the Duke scientists said.

"If you look in nature, there are many examples of different types of organisms, such as axolotls, newts and zebrafish, that have an elevated ability to regenerate lost or damaged tissue," said Kenneth Poss, Ph.D., senior researcher for the team, which published the findings on Nov. 3, 2006, in the journal Cell. First authors of the paper were Alexandra Lepilina, M.D., and Ashley Coon.

"Interestingly, some species have the ability to regenerate appendages, while even fairly closely related species do not," Poss added. "This leads us to believe that during the course of evolution, regeneration is something that has been lost by some species, rather than an ability that has been gained by other species. The key is to find a way to 'turn on' this regenerative ability."

The research was supported by the National Institutes of Health, the American Heart Association, the March of Dimes and the Whitehead Foundation.

Scientists previously had suspected that zebrafish regenerated their heart tissue by the direct division of existing cardiac muscle cells adjacent to the injury, Poss said.

However, Poss and colleagues found that the process more closely resembles what happens when a salamander regenerates a lost limb. In the salamander, the site of injury becomes the gathering point for a mass of undifferentiated stem, or progenitor, cells, which are immature cells with the potential to be transformed into other cell types. This mass of undifferentiated cells is known as a blastema. As the progenitor cells receive the correct biochemical cue, they turn into distinct cell types, such as bone, muscle and cartilage, to form the new limb.

Poss believes that when a portion of the heart tissue is removed from zebrafish, a blastema forms at the site of injury. However, the progenitor cells will not achieve their full regenerative potential without interactions with the layer of "epicardial" cells that forms over the blastema. The entire heart is wrapped in a membrane known as the epicardium.

By the third day after injury, the epicardial cells begin to cover the injury site, a process that takes approximately two weeks. The precursor cells within the blastema begin to differentiate into cardiac muscle cells and proliferate within the first three to four days after injury, the researchers found in their experiments.

"Within days of the injury, we find a significant increase in the expression of certain genes in the epicardial cover," Poss said. "These genes are typically expressed only during embryonic development of the cardiovascular system. The epicardial cells mobilize to cover the wound and blastema, and help provide new blood vessels, creating a protective niche where the new heart muscle can grow."

The researchers found that biochemical signaling between the blastema and the epicardium is controlled in part by proteins called fibroblast growth factors, which are involved in wound healing and embryonic development.

"When we blocked signaling by fibroblast growth factors in our zebrafish model, we found that the regeneration gets to a certain point and then stops," Poss said. "The new blood vessels show poor invasion of the newly regenerating cells, halting the formation of new heart muscle."

Poss said that a continued understanding of the processes involved in regeneration of the zebrafish heart could lead to therapies to repair human heart muscle damaged by disease or heart attack.

"Multiple types of progenitor cells have been identified within the mammalian heart, yet it displays little or no regeneration when damaged," Poss said. "By contrast, zebrafish mount a vigorous regenerative response after cardiac injury. Future studies in zebrafish could help us discover why this regenerative ability is lacking in mammals and potential ways to stimulate it."

Richard Merritt | EurekAlert!
Further information:
http://www.mc.duke.edu

Further reports about: Poss Regeneration blastema blood vessel heart muscle injury progenitor regenerate regenerative

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>