Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude announces breakthrough in eye cancer treatment

03.11.2006
Researchers use new, localized treatment to shrink retinoblastoma tumors, avoid chemo; treatment could be effective against some breast, lung, prostate and colon cancers

Scientists at St. Jude Children's Research Hospital have demonstrated in a mouse model a new, locally applied treatment for the eye cancer retinoblastoma that not only greatly reduces the size of the tumor, but does so without causing the side effects common with standard chemotherapy. The treatment also appears to be suitable for certain forms of breast, lung, prostate and colon cancer, and is simple enough for widespread use even in countries with limited resources.

A report on this work appears in the Nov. 2 issue of the journal Nature.

Retinoblastoma occurs in about 5,000 young children worldwide each year, arising from the immature retina, which is the part of the eye responsible for detecting light and color. The cancer is fatal if left untreated.

The new treatment holds promise for a simpler, more effective and less-toxic treatment for retinoblastoma that would eliminate the need for the current, complex therapy, according to senior author Michael Dyer, Ph.D., a Pew Scholar and associate member of the St. Jude Department of Developmental Neurobiology. The treatment is based on a discovery by Dyer's laboratory that overturned a widely held belief about the process of apoptosis (cell suicide) in retinoblastoma. Apoptosis is the way the body rids itself of abnormal cells that might become cancerous or cause other problems.

Until now, retinoblastoma experts thought that a mechanism called the p53 pathway triggered apoptosis in other types of cancer cells, but not in retinoblastoma. However, the St. Jude team proved not only that the p53 pathway was activated in early-stage retinoblastoma, but that excessive levels of a molecule called MDMX blocked it from triggering apoptosis in more advanced tumors. Based on this discovery, the St. Jude team used a molecule called nutlin-3 to block MDMX in retinoblastoma cells in test tube studies as well as in mouse models. The molecule was originally developed by

Roche Pharmaceuticals (Nutley, N.J.) for a similar use against a related target called MDM2 in adult cancer cells. The success in knocking out MDMX with nutlin-3 represents the first example of local delivery of a targeted chemotherapy drug for any childhood cancer, Dyer said.

Targeted therapy uses a customized drug to disable a specific molecule inside a growing cancer cell; local delivery is the placement of a drug at the site of disease, rather than systemic treatment. In systemic treatment, such as chemotherapy, a drug is infused into the body through a vein and then circulates, often causing toxic side effects that are especially challenging in children.

After demonstrating that nutlin-3 is effective when applied directly to the eye, the St. Jude team modified the treatment by combining this molecule with topotecan, a drug also being investigated in the treatment of retinoblastoma. Local delivery of this two-drug targeted treatment was even more effective, reducing tumor size significantly more than the most effective known combination of standard chemotherapy drugs.

"The findings suggest that this treatment not only could offer children with retinoblastoma more effective and less-toxic treatment," Dyer said. "It could also increase the chance that their vision can be preserved by eliminating the tumor and preventing its spread from the eye to the rest of the body."

The discovery that blocking MDMX releases the apoptosis response in retinoblastoma has important implications for certain forms of adult cancers as well. "Some forms of breast, lung, prostate and colon cancer are caused by abnormally large quantities of MDMX in the cells," Dyer explained. "So knocking out MDMX in those cancers might also dramatically reduce tumor size. And administering the drug directly to the site of the tumor could make the treatment especially effective while avoiding the toxicity caused by systemic exposure." This could mean the eventual elimination of all-body chemotherapy for certain cancers.

This work is likely to have its biggest impact on the care of children with retinoblastoma internationally, according to Dyer. Most children in the United States with retinoblastoma do not die from the disease because they benefit from early detection and advanced medical treatment. The complex treatment includes chemotherapy, radiation and laser therapy, as well as control of infections caused by treatment-related suppression of the immune system. However, most of the 5,000 children worldwide who are found to have retinoblastoma live primarily in countries with limited resources and have restricted access to medical treatment, according to Carlos Rodriguez-Galindo, M.D., an associate member of the St. Jude Oncology department.

"Today, those children do not have access to the advanced treatments available in other countries, such as the United States," Rodriguez-Galindo said, "but our new approach has the potential to make the treatment of retinoblastoma simpler and less toxic. Ideally, these treatments could be administered even in countries that cannot afford the highly complex infrastructure now required to manage children with retinoblastoma. This would mean saving many more lives and preserving more vision." Rodriguez-Galindo is a co-author of the paper.

Retinoblastoma can occur as a unilateral (one eye) or bilateral (both eyes) disease. In the case of unilateral disease, surgeons generally remove the eye that has the cancer in order to prevent the disease from spreading. However, children with bilateral retinoblastoma pose a significant challenge to physicians, who are reluctant to remove both eyes from young children, said Matthew Wilson, M.D., a surgeon in the St. Jude ophthalmology division and a co-author of the paper. In those cases, the physicians institute aggressive systemic chemotherapy to reduce the size of the tumor, followed by one of several possible therapies such as radiation or lasers to destroy the remaining cancer cells in the eye. "When successful, this therapy often saves vision," Wilson said. "Clinicians at major medical institutions generally save 70 percent of all eyes treated, even in the case of advanced disease."

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Cancer Dyer MDMX apoptosis chemotherapy retinoblastoma systemic

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>