Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of a key gene required for brain neural circuit formation

03.11.2006
An international team of scientists, lead by Dr. Frederic Charron at the IRCM, and Drs Ami Okada, Sue McConnell, and Marc Tessier-Lavigne in the USA, have made a discovery which could help treat spinal cord injuries and neurodegenerative diseases. This new finding will be published in the next issue of the prestigious scientific journal Nature.

The brain is composed of billions of neurons that must connect their axons with an appropriate set of targets to form the neuronal circuits that underlie its function. Developing axons are guided to their targets by attractive and repulsive guidance molecules. Inappropriate wiring or damage of these neuronal connections leads to severe abnormalities of the nervous system.

Three years ago, while he was a postdoctoral fellow in the laboratory of Dr. Marc Tessier-Lavigne, Dr. Charron discovered that Sonic Hedgehog (Shh) is an axonal attractant for brain and spinal cord neurons. However, the mechanism by which Shh elicited this effect remained unknown. The recent work of Dr. Charron, performed in close collaboration with Dr. Ami Okada and the teams of Drs. Sue McConnell and Marc Tessier-Lavigne, at Stanford University and Genentech, respectively, showed that Shh exerts its attractive effect through a novel receptor named Boc. Remarkably, this novel Shh receptor is absolutely required for the axon guidance role of Shh and the role of Shh in brain neural circuit formation.

"The findings of Dr. Charron and his team are of great relevance in developmental neurobiology and our understanding of normal brain development. This research could eventually have an impact on our understanding of neurodevelopmental disorders," says Dr. Rémi Quirion based in Montréal and Scientific Director of the Canadian Institutes of Health Research Institute of Neurosciences, Mental Health and Addiction. "No matter how specialized research findings may be, the knowledge we gain from them, holds the key to improved health and quality of life for Canadians and people throughout the world afflicted by neurodevelopmental disorders," adds Dr. Quirion.

... more about:
»Axon »Charron »Shh »neural »spinal

In addition to helping us understand the immense complexity underlying the wiring of the nervous system, the Dr. Charron's research will also help to identify novel strategies to promote the proper guidance and wiring into neural circuits of axons damaged by neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases, or by brain and spinal cord injuries.

This work will be published only a year after Dr. Charron established his laboratory at the Institut de recherches cliniques de Montréal (IRCM).

"Dr. Charron is one of the country's leading newly arrived neuroscientists. This research has important long-term implications for the repair of spinal cord injury: if we knew all of the molecules required to guide axons correctly during spinal cord healing, we'd know how to heal spinal cord injuries " says Dr. Rod McInnes, Scientific Director of the Canadian Institutes of Health Research Institute of Genetics. "This is beautiful research that adds another major brick to our building a complete understanding of how the spinal cord is made, and how injury of it can be treated."

Lucette Thériault | EurekAlert!
Further information:
http://www.ircm.qc.ca

Further reports about: Axon Charron Shh neural spinal

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>