Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New molecular method reveals ‘conversations’ between proteins in cells

30.10.2006
By further refining a molecular method they previously pioneered, researchers at Uppsala University have managed to uncover interactions between protein molecules in human cells. The method, described in the latest issue of the scientific journal Nature Methods, opens entirely new potential for understanding the role of proteins in various diseases.

Proteins build up the body’s cells and tissues, and knowledge of the human genome has entailed that scientists today know all the proteins our bodies can generate. It is known that many pathologies can be tied to changes in proteins, so it is important for us to increase our knowledge of what proteins bind to each other, how they work together in cells, and how these processes impact various disturbances.

“With this new method we can see how individual proteins interact directly in cells, which has not been possible until now. In the past scientists have largely studied how much of a protein is present in various tissues, but now we can study how they function as well,” says researcher Ola Söderberg, a member of the team that carried out the study within the framework of the team’s research project on molecular tools.

The method is a further elaboration of the so-called proximity ligation test that was recently developed by the same research group. Proximity ligation means that proteins shown to be present bring about the formation of DNA strings that can be detected effectively and with a high degree of sensitivity. With the new modification, it is now possible to show just where in a cell or tissue sample the interacting proteins are to be found. Even individual protein molecules can be singled out.

... more about:
»Molecular »method

“The method may be of great importance to scientists in their understanding of cell processes and ultimately may lead to more accurate examinations of tissue sample in diseases and to very early diagnosis,” says Professor Ulf Landegren, who directs the research team.

Anneli Waara | alfa
Further information:
http://www.nature.com/nmeth/journal/vaop/ncurrent/index.html

Further reports about: Molecular method

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>