New molecular method reveals ‘conversations’ between proteins in cells

Proteins build up the body’s cells and tissues, and knowledge of the human genome has entailed that scientists today know all the proteins our bodies can generate. It is known that many pathologies can be tied to changes in proteins, so it is important for us to increase our knowledge of what proteins bind to each other, how they work together in cells, and how these processes impact various disturbances.

“With this new method we can see how individual proteins interact directly in cells, which has not been possible until now. In the past scientists have largely studied how much of a protein is present in various tissues, but now we can study how they function as well,” says researcher Ola Söderberg, a member of the team that carried out the study within the framework of the team’s research project on molecular tools.

The method is a further elaboration of the so-called proximity ligation test that was recently developed by the same research group. Proximity ligation means that proteins shown to be present bring about the formation of DNA strings that can be detected effectively and with a high degree of sensitivity. With the new modification, it is now possible to show just where in a cell or tissue sample the interacting proteins are to be found. Even individual protein molecules can be singled out.

“The method may be of great importance to scientists in their understanding of cell processes and ultimately may lead to more accurate examinations of tissue sample in diseases and to very early diagnosis,” says Professor Ulf Landegren, who directs the research team.

Media Contact

Anneli Waara alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

“Nanostitches” enable lighter and tougher composite materials

In research that may lead to next-generation airplanes and spacecraft, MIT engineers used carbon nanotubes to prevent cracking in multilayered composites. To save on fuel and reduce aircraft emissions, engineers…

Trash to treasure

Researchers turn metal waste into catalyst for hydrogen. Scientists have found a way to transform metal waste into a highly efficient catalyst to make hydrogen from water, a discovery that…

Real-time detection of infectious disease viruses

… by searching for molecular fingerprinting. A research team consisting of Professor Kyoung-Duck Park and Taeyoung Moon and Huitae Joo, PhD candidates, from the Department of Physics at Pohang University…

Partners & Sponsors