Hormone resistance of pituitary tumors and Cushing disease explained

Cushing disease is caused by pituitary tumors that produce excessive amounts of hormone because the tumor cells have become resistant to negative feedback control by a class of steroid hormones, glucocorticoids. In Cushing disease, this excessive hormone production can lead to hypertension, obesity, diabetes and osteoporosis.

Through detailed molecular investigation of the mechanism of this negative feedback, a Montréal research group has identified two essential components (proteins) of this feedback mechanism. Extrapolating from these basic studies, they have shown that about half of the pituitary tumors from Cushing disease patients are deficient in expression of either of these proteins, thus providing a molecular explanation for the hormone resistance that is the hallmark, and likely first event, in the formation of these tumors.

The novel insight provided by knowledge of the basic mechanism of hormone resistance will lead to the rational design of therapeutic approaches for the better management of Cushing disease patients. This insight will also help understand other forms of hormone resistant cancers.

Dr. Jacques Drouin is the Director of the Molecular Genetics Research Unit at IRCM. He holds the GlaxoSmithKline Chair in Molecular Genetics. The IRCM (www.ircm.qc.ca) is recognized as one of the country's top-performing research centres. It has a mandate to establish links between research and patients, promote the prevention of illness, and train a new generation of high-level scientists. The IRCM has 37 research units and a staff of more than 450. The IRCM is also affiliated to Université de Montréal.

Media Contact

Lucette Thériault EurekAlert!

More Information:

http://www.ircm.qc.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors