Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA scientists unravel 'molecular inch-worm' structure of walking-pneumonia bacterium

24.10.2006
Researchers at the University of Georgia, using glow-in-the-dark proteins and microcinematography, have helped unravel the development and function of a complex organelle in the bacterium that causes "walking pneumonia."

The researchers have described in new, precise detail the unique cell extension that forms on one end of the bacterium Mycoplasma pneumoniae. This structure, called a "terminal organelle," performs several tasks for this pervasive bacterium and even acts as a "molecular inch-worm," helping the microorganism move.

"Mycoplasmas are among the simplest known prokaryotes--only a fraction the size of other health-related bacteria such as E. coli," said microbiologist Duncan Krause, leader of the research team. "They are true minimalists with very small genomes, lacking the typical cell regulatory mechanisms found in other bacteria. And yet some species such as M. pneumoniae posses this complex terminal organelle. We've been able to observe it in growing cultures and describe the choreography of events at a level of detail not previously possible."

The research is being published this week in The Proceedings of the National Academy of Sciences. Other authors of the paper include graduate student Benjamin Hasselbring, undergraduate Robert Krause and former graduate student Jarrat Jordan.

... more about:
»Organelle »bacterium »pneumonia »structure

M. pneumoniae infections affect millions worldwide, causing chronic bronchitis and atypical or "walking pneumonia," a term that describes cases of pneumonia that are distinct from acute, life-threatening pneumonia requiring a patient's hospitalization.

Krause and others have been increasingly interested in the terminal organelle that develops on one end of M. pneumoniae because it is involved in cell division, adherence to respiratory tissues and a little-understood mechanism of propulsion called "gliding motility."

Bacteria can move in a variety of ways, including the use of flagella to "swim." But since M. pneumoniae lack flagella, they "glide," a method of movement that has been known for some time yet never entirely understood. The cells seem to bend and flex, but it's unclear how that is accomplished. The new data indicate that gliding is essential for cell division in M. pneumoniae.

"In addition to its significant impact on public health, M. pneumoniae is intriguing from a biological perspective," said Krause. "They have no cell walls, and their genome is among the smallest known for a cell capable of a free-living existence."

Other researchers, using electron microscopy, have described the basic structure of the terminal organelle, but Krause's team went further, using fluorescence microscopy and fluorescent protein fusions that allowed them to track the actions of specific proteins in live, growing cells. Time-lapse digital imaging let them see the development and activity of this structure in real time--giving new clues about function and demonstrating that, contrary to previous thinking, multiple new terminal organelles often form before cell division is observed.

From the standpoint of basic science, this research demonstrates the feasibility of using fluorescent proteins to study how organelles in these incredibly tiny bacteria grow and what their functions are. From a medical standpoint, however, they point the way to potential new drug targets and therapies to stop walking pneumonia and chronic bronchitis infections in their tracks.

Since the organelle is involved in colonization of epithelial tissues in human lungs, finding a way to stop such attachment or gliding could halt infections or make them far less severe.

"M. pneumoniae accounts for 20 percent of community-acquired pneumonias in this country," said Krause. "Finding out more about how the bacterium that causes the disease works gives us a new edge in thinking of ways to overcome such infections."

Philip Lee Williams | EurekAlert!
Further information:
http://www.uga.edu

Further reports about: Organelle bacterium pneumonia structure

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>