Sunflower speciation highlights roles for transposable elements in evolution

The findings are reported by Mark Ungerer and colleagues at Kansas State University and appear in the October 24th issue of the journal Current Biology, published by Cell Press.

Theory predicts that for diploid species–that is, those possessing two sets of chromosomes, like most animals and plants–the origin of new species through inter-species hybridization may be facilitated by rapid reorganization of genomes. Previous work on three independently derived hybrid sunflower species has validated this mode of speciation by documenting novel structural rearrangements in their chromosomes, as well as large-scale increases in nuclear DNA content. The nuclear-genome size differences between the hybrids and their parental taxa occur in spite of the fact that all species possess the same number of chromosomes and are diploids.

In the new work, the researchers have determined that the genome size differences between the hybrid and parental sunflower species are associated with a massive proliferation of transposable genetic elements that has occurred independently in the genome of each hybrid species. Transposable elements, made famous by Barbara McClintock in her study of their behavior in maize, are related to infectious retroviruses and are capable of multiplying and inserting themselves at different points throughout a host genome. They are found in virtually all eukaryotic genomes.

The new findings not only add an interesting twist to the origin of new sunflower species through hybridization, but also suggest that the sunflower system may emerge as an excellent model group for studying the natural forces influencing the activation and proliferation of transposable elements in plants. This is because in addition to their hybrid origins, each of the three hybrid species is adapted to, and evolved in, a so-called abiotically extreme environment–two of the species are found in desert environments, while the third is adapted to salt marshes. Both hybridization and abiotic stress have been implicated as natural agents of activation and proliferation of transposable elements.

Media Contact

Heidi Hardman EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors