Age-related changes in DNA repair illuminate the connection between age and genetic damage

In the new work, researchers found that cells in young fruit flies make use of a different mix of molecular DNA-repair mechanisms compared to cells in older flies. The findings are reported by William Engels and colleagues at the University of Wisconsin and appear in the October 24th issue of the journal Current Biology, published by Cell Press.

DNA repair is essential for the accurate preservation of genetic information and to ensure the healthy functioning of cells, and a connection between aging and DNA damage has long been suspected. One line of evidence supporting the connection is that defects in certain genes needed for DNA repair produce maladies that mimic those of accelerated aging. In humans and other mammals, these effects include elevated occurrence of malignancies, osteoporosis, hearing loss, graying of hair, and hair loss. It is also known that DNA damage accumulates with age in cells of a variety of tissue types.

Breaks in the DNA chain have a variety of causes and occur frequently in the course of natural cellular processes. Repairing such breaks is an essential but hazardous process, often leaving missing or added bases at the point of repair. Cells possess a variety of methods for repairing broken DNA, and the cell's “choice” of how to repair a particular break can be critical. Some repair methods are simple but error prone, whereas the more accurate methods have elaborate molecular requirements and are probably much slower.

The new results show that the reproductive cells of young flies tend to use the rough-and-ready repair processes that do not involve extensive DNA synthesis and do not require a matching DNA template for the repair. As the organisms age, however, the same kind of DNA breaks are repaired primarily by the slower but much more accurate methods that make use of a matching template. These findings raise the question of whether the rapid but risky methods of DNA repair used by cells of young individuals contribute to the accumulation of genetic damage, and perhaps to the aging process itself. Older cells may use the safer repair methods, but they still carry the genetic damage incurred during DNA repair in the fly's “reckless” youth.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.current-biology.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors