Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery about evolution of fungi has implications for humans

24.10.2006
As early fungi made the evolutionary journey from water to land and branched off from animals, they shed tail-like flagella that propelled them through their aquatic environment and evolved a variety of new mechanisms (including explosive volleys and fragrances) to disperse their spores and reproduce in a terrestrial setting.

"What's particularly interesting is that species retained their flagella for different lengths of time and developed different mechanisms of spore dispersal," said David McLaughlin, professor of plant biology at the University of Minnesota in the College of Biological Sciences and co-author of a paper published in the Oct. 19 issue of Nature describing how fungi adapted to life on land.

The discovery is the latest installment in an international effort to learn the origins of species. McLaughlin is one of five principal investigators leading a team of 70 researchers at 35 institutions. The group analyzed information from six key genetic regions in almost 200 contemporary species to reconstruct the earliest days of fungi and their various relations.

McLaughlin is directing the assembly of a shared database of fungal structures obtained through electron microscopy, which produces detailed images that provide clues to the diversity of these organisms. The work is funded by a $2.65 million "Assembling the Tree of Life" grant from the National Science Foundation that was awarded to Duke University, the University of Minnesota, Oregon State University and Clark University in January 2003.

... more about:
»McLaughlin »Organisms »animals »fungi »species

The discovery provides a new glimpse into evolution of life on Earth. It will also help scientists better understand this unusual group of organisms and learn how to develop uses for their unique properties in medicine, agriculture, conservation and industry.

McLaughlin believes fungi are a valuable untapped natural resource. They play a variety of roles in nature, such as supplying plants with nutrients through mutualistic relationships and recycling dead organisms. He estimates that there are about 1.5 million species on the Earth, but only about 10 percent of those are known. And civilization has only identified uses for a few of those, such as using yeast to make bread, beer, wine, cheese and a few antibiotics.

"Understanding the relationships among fungi has many potential benefits for humans," McLaughlin said. "It provides tools to identify unknown species that may lead to new products for medicine and industry. It also helps us to manage natural areas, such as Minnesota's oak savannahs, where the fungi play important roles but are often hidden from view."

Fungi are also intriguing because their cells are surprisingly similar to human cells, McLaughlin said. In 1998 scientists discovered that fungi split from animals about 1.538 billion years ago, whereas plants split from animals about 1.547 billion years ago. This means fungi split from animals 9 million years after plants did, in which case fungi are actually more closely related to animals than to plants. The fact that fungi had motile cells propelled by flagella that are more like those in animals than those in plants, supports that.

Not all fungi are beneficial to humans. A small percent have been linked to human diseases, including life-threatening conditions. Treating these can be risky because human and fungal cells are similar. Any medicine that kills the fungus can also harm the patient. Thus knowing more about fungi helps identify new and better ways to treat serious fungal infections in humans. Fungi are also the major cause of disease in agricultural crops, so understanding them also helps track and control these plant diseases.

McLaughlin and his colleagues will continue their efforts to establish genetic relationships among fungi and to understand their roles in nature. Additional structural studies, especially of key species, are needed to determine how the organisms adapted.

Mark Cassutt | EurekAlert!
Further information:
http://www.umn.edu

Further reports about: McLaughlin Organisms animals fungi species

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>