Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mary Hanafin, TD, opened world-class €20m National Institute for Cellular Biotechnology Institute at DCU

24.10.2006
DCU's €20m National Institute for Cellular Biotechnology (NICB) was officially opened by Mary Hanafin, TD, Minister for Education and Science.

The NICB has received over €34.4 research funding from the HEA under the PRTLI Cycle 3 scheme, and has also received funding from SFI, Atlantic Philanthropies, Enterprise Ireland and the Health Research Board. The NICB occupies a unique niche in Ireland's R&D sector in the Irish third-level biomedical sector, applying molecular cell biology research to solving biomedical problems.

The centre, under the Directorship of Professor Martin Clynes, collaborates with a number of Dublin hospitals in the diagnosis and treatment of cancer, diabetes, eye disease and microbial diseases.

The NICB's first cancer drug treatment discovery has been taken into clinical trial with Professor John Crown in St Vincent's Hospital, Dublin. A team of researchers involved in research into resistance to chemotherapy drugs have identified a common arthritis drug, Sulindac, which can inhibit an important cancer resistance factor. Having successfuly completed Phase I of its clinical evaluation, Phase II is currently underway, examining the role of Sulindac in the improvement of the treatment of malignant melanoma. The trial represents the close partnership of scientists in the NICB, clinical researchers and clinicians, the All-Ireland Cooperative Oncology Group and the pharmaceutical industry.

... more about:
»NICB »Treatment

"Although still in the early stages, this unique partnership is a model for the evolution of rational cancer treatment to improve treatments for Irish cancer patients", said Professor Martin Clynes.

Another research project includes the identification of molecular markers which are present in the blood which are indicative of the presence of a cancer and how the cancer is progressing. This new approach, if translated to the clinic, would mean that a standard blood test would allow the clinician to make early diagnosis of cancer even before the onset of systems. Cancers being investigated include breast, lung, pancreatic, renal and skin cancers.

The treatment of corneal blindness is the subject of another research project carried out by the NICB, the Royal Victoria Eye and Ear Hospital, the Irish Blood Transfusion Service and the Blond McIndoe Centre, in the UK. They are examining the molecular markers of corneal stem cells which can be 'grown' in the lab and used to treat a number of corneal diseases and injuries.

The NICB is also involved in a revolutionary new treatment for diabetes which will involve the harvesting of 'islets' from donors and transplanting them directly into the veins patients. These islets then produce insulin normally, bringing about an effective cure to the patients.

As a result of its expertise in mammalian cell culture technology, NICB is also involved in close collaboration with industry, including an SFI-funded €4m collaborative project with Wyeth Biopharma.

Shane Kenny | alfa
Further information:
http://www.dcu.ie

Further reports about: NICB Treatment

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>