Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic repair mechanism clears the way for sealing DNA breaks

23.10.2006
Scientists investigating an important DNA-repair enzyme now have a better picture of the final steps of a process that glues together, or ligates, the ends of DNA strands to restore the double helix.

The enzyme, DNA ligase, repairs the millions of DNA breaks generated during the normal course of a cell's life, for example, linking together the abundant DNA fragments formed during replication of the genetic material in dividing cells.

"Our study shows that DNA ligase switches from an open, extended shape to a closed, circular shape as it joins DNA strands together," says the study's senior author Tom Ellenberger, D.V.M, Ph.D., the Raymond H. Wittcoff Professor and head of the Department of Biochemistry and Molecular Biophysics at Washington University School of Medicine in St. Louis. "The ligase resembles a wristwatch that latches around the DNA ends that are being joined."

DNA is surprisingly reactive and under continuous assault from environmental toxins and reactive cellular metabolites. A means of repairing DNA damage is vital to maintaining the integrity of the genetic blueprint.

... more about:
»DNA »Ellenberger »PCNA »SAXS »ligase

When these repair processes go awry, cells can malfunction, die or become cancerous, so researchers would like to know how "DNA mechanics" do their jobs. DNA ligases are attractive targets for the chemotherapy of cancer and other diseases.

DNA ligase works in concert with another ring-shaped protein known as a sliding clamp. Sliding clamps, such as the human PCNA protein, are master regulators of DNA repair, providing docking sites that recruit repair enzymes to the site of damage.

"When ligase stacks against PCNA and encircles the DNA, we think this interaction ejects other repair proteins from PCNA," says Ellenberger. "In this role, ligase may serve as the final arbiter of DNA repair, certifying that the DNA is in pristine condition and ready for the final step of DNA end joining."

In this study of DNA ligase, published in the Oct. 20 issue of Molecular Cell, Ellenberger's research group teamed with scientists from The Scripps Research Institute (TSRI), the University of Maryland School of Medicine and Lawrence Berkeley National Laboratory (LBNL).

To visualize the complicated and dynamic structures of DNA ligase and PCNA, both separately and in a complex, Ellenberger and his group worked closely with LBNL scientists to take advantage of the intense X-rays and advanced technologies of the SIBYLS synchrotron beamline at the Berkeley lab Advanced Light Source.

The researchers used a combination of X-ray crystallography and small angle X-ray scattering (SAXS). They conducted their studies with a model organism called Sulfolobus solfataricus that has many of the same biochemical characteristics of multicelled organisms, including humans.

"We expected that DNA ligase would latch shut when bound to the ring-shaped PCNA protein," says Ellenberger. "However, the SAXS experiment clearly shows that ligase remains in an open conformation enabling other repair proteins to bind PCNA until the DNA is engaged and ligase snaps shut."

Co-author John Tainer, Ph.D., professor at LBNL and TSRI, says the results reveal for the first time how these proteins can dynamically assemble and change their shape to join DNA ends during replication and repair.

The closed conformation of DNA ligase bound to DNA was imaged in a separate study previously reported by Ellenberger's group. Ellenberger says that the challenge for the future is to study the molecular choreography of ligase, PCNA and DNA in the same experiment, which will require new methods of analyzing the SAXS data.

"The SAXS methods offer a powerful means of visualizing large proteins and protein complexes that are difficult or impossible to crystallize," says Ellenberger. "Imaging of complex processes will require a variety of tools that address different levels of biological organization from the molecular level to whole animals."

Research on biological imaging is one aspect of the University's BioMed21 initiative, which calls for converting knowledge of genetic mechanisms into practical applications.

Gwen Ericson | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: DNA Ellenberger PCNA SAXS ligase

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>