Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How ants find their way

18.10.2006
Scientists reveal how wood ants navigate by visual landmarks

Ever wondered how ants find their way straight to the uncovered food in your kitchen? Now scientists have discovered how the humble wood ant navigates over proportionally huge distances, using just very poor eyesight and confusing and changing natural landmarks. The research could have significant benefits in the development of autonomous robots and in furthering our understanding of basic animal learning processes.

Scientists at the University of Sussex, funded by the Biotechnology and Biological Sciences Research Council (BBSRC), have shown precisely how the ant's visual navigation strategy works. On a wood ant's first trip to a food site it follows a chemical trail left by earlier ants. This is a slow way of travelling as the ant needs to walk with its antennae to the ground. However, this initial route forms the basis of an efficient learning strategy. On the first trip ants store images of the route as they travel and on later trips to the food site will navigate using a combination of landmarks and memories of the whole landscape. The scientists found the ants even used different sets of landmark memories depending on whether they were on their way to food, or whether they were full and heading back to the nest. Ants store many memories and have mechanisms to activate the right ones.

The researchers refined their research on ant visual memory selection in lab experiments. Research leader, Professor Tom Collett from the University of Sussex's Centre for Neuroscience, explained: "To show that ants use visual memory to navigate we trained ants to find food 10cm from a cylinder. We then doubled the size of the cylinder and the ants searched for the food at 20cm away where the retinal size of the landmark was the same."

... more about:
»Landmark »Visual »cylinder »navigate

To analyse the ants' powers of recall an ambiguous situation was set up. Ants were trained to search for food between two cylinders of different sizes and then tested with the training cylinders replaced by two cylinders of the same size. Would ants know which cylinder is which? They were only able to search in the predicted place when a patterned background was introduced as a retrieval cue. Professor Collett said: "To know which cylinder was which ants needed the patterned background to be in a different position on the retina when they faced one or other cylinder. Accurate memory retrieval often relies on ants storing a large panorama."

A better understanding of ant navigation could help to develop autonomous robots. Professor Collett explained: "Insect behaviour is much more 'machine-like' than that of mammals, and ants are a lot less flexible in their use of navigational strategies. This stereotypy makes it easier to understand how their strategies operate and to design robots that navigate following similar principles."

The researchers are now planning further experiments that will reveal new levels of detail about insect visuo-motor behaviour and allow the construction of models of memory retrieval.

Professor Julia Goodfellow, Chief Executive of BBSRC, said: "Cognitive systems research gives us the opportunity to learn more about the ways that animals, including humans, process information to learn, reason, make decisions and communicate. BBSRC is working with other Research Councils and funders to support new interdisciplinary research in this area."

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Landmark Visual cylinder navigate

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>